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Abstract: This paper considers the higher order Boussinesq equations for the flow with
vorticity, such as the wave propagation in shear currents or in surf zone. I order to
show the characteristics of the mathematical model, the equations are first derived for a
simple case: vertical two-dimension, horizontal bottom and constant vorticity. Then, the
form of the equations for horizontal 2D case is given. Comparison with the Veeramony
and Svendsen’s horizontal 1D model is made. The determination of the horizontal
vorticity component is discussed in order to make the closure of the equations.

Introduction

For water wave motions in currents or surf zone, vorticity is present, The
mathematical model designed for such a case should take the vorticity into
account and the usual mathematical model is not valid due to the assumption of
irrotational flows. This study derives the mathematical model for the wave
motions in the flows with vorticity. This problem is concerned in many
engineering problems, such as the interaction of waves with shear currents, and
the wave motions in surf zone and related nearshore circulations (Peregrine,
1998,1999).

Most Boussinesq models are based on the potential theory or a very weak
vorticity condition (in which only the vertical component of vorticity is allowed
present but the horizontal not). The wave breaking is considered approximately.
One way is to adopt the eddy viscosity concept, and an artificial eddy viscosity
term is added to the momentum equations (Zelt 1991; Karambas and Koutitas
1992; Wei et al. 1995). Another way is to use the surface roller concept (Deigaad
and Fredsoe 1989; Schaffer et al 1993; Madsen et al 1997), and the roller is
assumed to be the volume of water riding on the front face of the wave and

106



COASTAL ENGINEERING 2004 107

propagating at the wave speed. So the ununiform velocity distribution is formed
for breaking waves, which consists of the a constant value in the roller region
and another ordinary wave velocity distribution, usually also constant value, in
the rest part of total water depth, hence an excess momentum flux is introduced,
which simulates wave breaking.

The fluid motions in breaking waves are essential turbulent, which are full of
vorticity. The surface roller model for breaking waves is too simple to consider
the breaking wave motions in view of more realistic description. A more
accurate way is to take the rotational flows caused by the turbulent motions into
account for Boussinesq models. Yu and Svendsen (1995), Veeramony and
Svendsen (2000) derive the breaking terms in the Boussinesq model directly by
assuming that the flow field is rotational. The excess pressure and momentum
terms are introduced. The effect of breaking waves can be taken into account.
This model is only for vertical two dimensional problems. Rego, Kirby and
Thompson (2001) also give this kind of model, but in term of the velocity at
arbitrary level. Shen (2000) presents the derivation of Boussinesq model to
encompass the irrotational and rotational flow. The derivation is accurate
to O(u?) (1 is the ratio of water depth to wave length), the nonlinear parameter
(the ratio of wave height to water depth ) and the vorticity can have the order of
magnitude of O(1) accurate to O(;zz) . The governing equation is not given in an
explicit form in this derivation.

The present study presents the higher order Boussinesq model in which
vorticity is considered. First, we derive the model for the vertical two
dimensional, constant vorticity and water depth case. From this simple case, we
can get a quick understanding of the equations we want to set up. Then, the
model is extended to the horizontal two dimensional and variable water depth
case, For the model, the nonlinear parameter can have the order of magnitude
of O(1) accurate to O(,uz) , and the dispersion property is accurate to O( y4) .In
order to get the closure of the model, the determination of the vertical
distribution of vorticity is discussed.

The derivation of the equations for a simple case
The derivation of equations

We first derive the equations for the following simple case: the vertical two
dimensional flow on horizontal bottom and with constant vorticity @ over water
depth. The velocity produced by the vorticity has the expression

U(z) = Q(z+h) (1.1

Since the problem is vertically two-dimensional, the vorticity will keep constant
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if it is constant initially and always remains in the current flow afterward. So the
wave motions will remain potential flows and have the potential function ¢ . The
Bernoulli equation for this flow reads

P e wy e P gemqw =Ly + 22 (1.2
o 2 p 2 P

where p_ is atmospheric pressure, ¥ is the stream function, v and ware the
horizontal and vertical velocity components respectively. On the free

surface, p = p,, this equation becomes

o¢ 1 |
(Elzn + =G+ W)+ gn - Q¥, =-U(0)’ .
where the subscribe 77 means the value at free surface and we have
— o (& (1.4)
u, —U(ﬂ)+(axl=” W"_(az)z—”

From the above definition, we can get the potential flow velocity
u, =0¢f/0xand w,=0¢/0z, the rotational flow velocityu, = U(z) andw, =0.
Then, the depth-averaged velocity will have the expression

u=u,+u, | (1.5)
where

_ 1 _ 1,09

U =E [’hudz H up =:i" hadz (16a:b)

| 1

ur=gth(z)dz=59d (1.6¢)

For a horizontal bottom, the velocity potential has the following expansion
of a power series in vertical coordinate z.

B0 = =5+ 2 o 4 0 2) o an

here ¢, = ¢(x, Z’t)|z= , - Hence we have

x). " i (1.8
(g)hn _¢0X —ad ¢0Xxx +:],—|d ¢om oo .

= 5 19
— 1 =-d¢, +—d e |

( aZ )Z:” ¢0x.x 3‘ ¢0xxxx

where d =h+n . From(1.7) we can get (see Zou, 1999).
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— 1 5 T 4
uo:up+§d2um+;§d4upw+0(y6) (1.10)

where u, = @,,, Substituting (1.10) into (1.8 and (1.9) gives

84 1,1 .

= =U, ——d U, ——d Uy, + (L1

(6)«7)2:,7 p T3 M Ty @ pren

W, :(@) - —di, LIPS (1.12)
0z ), 3

Then u, in (1.4) canbe expressed as

u, =" +4, +4, (1.13a)
where
i :(% i =atm - Latg e (1.13b)
), 3 45
u,=U(n)-u, (1.13¢)

Substituting (1.13) and (1.12) into (1.3) for u, andw, , then differentiating
the resultant equation with respect to x, applying the following relation for
oY, [0x (see Appendix)

o2 __gon__dum
Ox ot ot
and replacing #,by u# —u, will give the following equations accurate to

O CTRY

u, +uu,+gn, +G+AM =R+ AP (1.152)

(1.14)

G= —ldzﬁm +[l d* (i, ) -ldzz'm,m]x +—1—d17,17xx -dn,u, (1.15b)
3 2 3 3
R=—d%% (1.15¢)

AM =14,4,, ——;—[dzﬁ,(ii—ﬁ,)n]x (1.15d)
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AP =1, +(4,u), +§dzﬁrm

Hed @)+~ d'T,), - (LT,
2 3

Yanw vana -Law (1.15¢)
3 171 rxx 77)( rat 45 rExxxt *

Another governing equation is the continuity equation, which has the usual
form in term of ©

n, +(di), =0 (1.16)

From (1.1) , (1.6¢) and (1.16), we have
1

u, =U(n)-u, IEQd (117

u, =%Qd, =——;—Q(d17)x =—(u,u), (1.18)
So we have the relation

a,+@u), =0 (119

Substituting this into (1.5¢) give the following simpler expression for AP

AP = %d i, +[%d (@)} %d *Fit,,, ], - (d*5,4,,),

rxxt

(1.200

rxxxxt

1 1
~-—dnu._+dnu. —-—d'u
3 17! rxx nx rxt 45

The dispersion property

Now we analyze the dispersion property of the equations derived above, we
assume the order of magnitude of 2 isO(1)and linearize the equation. After
substituting the expressions for %, and #, into the equation (1.15), we get the
following linearized expressions for the nonlinear terms in the equation.

1 —
uuxz——Uo(%an+um (12D

2

1
AM QU ——é-UOhZE (1.22)

pxxx
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1 . Dp 1 _
G-AP-R~—Q—L+ Uy
2 Dt 2 UM
-%hzﬁm —%Uom,,m —zlghzﬁm, (1.23)
in which
Uy =U(0) = Qh (1.24)
D_o U 2 (1.25)

— T °

Dt ot Ox
Here U , is the current velocity at z=0. In the above derivation, (1.15b) has been
used for P, ie. the first two terms in (1.15b) remain although they can cancel
each other, see (1.19). This can make us easily to get the dispersion relation in
the form expressed by the differentiation operator (1.25) . To this end, we
utilized the following expression for these two terms.

i, +@ ), =121 Lug (1.26)
2 Dt 2
From the above results, (1.15a) and (1.16) can be linearized as
Du Du Du
P +gf7x+Q—D—77=lh2——”” oL gt Zprooee (1.27)
D¢ D: 3 D¢ 45 D¢
and
_DQH% -0 (1.28)
D¢ ’

In the last term of (1.27), 0/0¢ has been replaced by D/D¢ and the error of
this is O(gu*), which can be ignored up to the accuracy of the equations.
Eliminating 77 from the above two equations yields
D’ D#,, 1 ,D% 1 ,D*u
L ohy U, = —p? oA T proxy (1.29)
D ST D, T3 b2 450 DA

Assume
i, (x,0) = b (1.30)

k,and w,are the wave number and frequency respectively. Substituting (1.30)
into (1.29) gives

(1+lk§h2 ——l—ic;;h")co2 —ghk§(1+—9—w)=0 (1.31a)
3 45 gk,
where
=0, -kU, (1.316)

(1.31a) can also be written as
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2 2 Q 12,2 2 4,4
w0 — ghkl (1 + — o)1 -=k2h> + —k}h* =)=0 (132
gk, 3 15

This is the dispersion relation of the present equations. By applying the
following expansion

th kh = kh——(kh) = (kh) - (133)

We know that this relation agrees w1th the result accurate to O(k*%") of the
following accurate dispersion relation

w? —gk0[1+%a)]thkoh=o (1.342)

0

Here

o=, -kU, (1.34b)

Extension to horizontal two dimensions

The equations derived in the last section can be extended to horizontal two
dimension. Suppose the flow is rotational and has the vorticity

w=(0,,0,0,)=V'xV .1
in which ¥V =(wv,w) , V' is the three dimensional gradient operator:
V' =(8/0x,0/0y,0/dz). The expression (2.1) has the following components:

%_@ =-@,, —a—li—,uszzs ~-h<z<en (2.2a,b)
oy Ox oz

Here s is the transformed horizontal vorticity defined by
s=(w,,0,)T=(0,,~0,) 2.3)

inwhich T is the transformation matrix defined by

r=|? (2.4)
11 oo '
V in (22b) is the horizontal two dimensional gradient

operator V = (8/0x,8/dy) .
We can decompose the solution into the potential part u,,w, and the
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rotational part u,,w,:
u=u,+u, w=w, +Ww, (2.5a,b)

The solutions of the two parts can be sought separately. The potential part
satisfies the following equations and boundary condition:

p

+Veu,=0, -—h<z<en (2.62)
Oz
Ou, R
——-u'Vw, =0, —h<z<en (2.6b)
Oz
w, ==Vh-u,, z=-h (2.6¢c)
The rotational part satisfies the following equations and boundary condition:
aW’+V-u,=0, —-h<z<en (2.7a)
oz
Ouy 2
E—p Vw, =5, —h<z<en (2.7v)
u,=w, =0 z=-h (2.7¢)

In the following, we will not give the solution for #, , which has been know and
only gives the solutions for #, and w, . They have the following form of
expressions accurate to O(u®)

u, =u® ~VV-fh [ u®dz?

+VV.VV. fh fh fh fh u®dz* +0(u’) (2.8a)
w, ==V fhuﬁ‘)) dz+V-VV. fh fh fh u® dz +o(ut) (2.8b)

in which
u® = [sdz 2.9)

Substituting these expressions for velocity into Eular Equations, we can get the
following form of the higher order Boussinesq equations with the inclusion of
the vorticity

M +V-(du)=0 (2.10a)
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u,+(u-Vu+gVn+G+AM = R+ AP (2.10b)
in which
G = —{d D[LV(dV &) + L V(Vh-#)]+ L VAD(@@V - &)
3 3 6 (2.11)
+V77D[—§-dV-E+Vh-E]}
=——nh’VV.-VV (h —h°VV.[hVV . -(h
R==3" (hit, ), + T WYV (RVY- (ki) ) 2.12)
1 1
—h'VV .YV (@), ——hWVV-[W’VV-(i
120 (#,), By [ (#,),]
.~ o)l le.s ,,n
am = [ (@, -V):,d2+gflurv-(du,)dz (2.13)
AP ==V {d* DIV -(d(F; - F) - V- (B - B)
~vd- (P! -P,)]} ~VhD[V-(dP’)-Vn-P; -Vd-P] (2.14)
Hered = h +77, the other definitions are as followings
D=—q+.5ﬂ-V; V:V+(8Vn+ﬂVd)i (2.15a,b)
ot d 0z
0, =u,-u,, U, =~ fhsdz , U, =:11~fhurdz (2.16a,b,c)
pr=(azfaz[za,az, Pp=[praz (2.17a,b)
From the above definitions, we have
Pl=a,, P=uaZ (2.18a,b)

Since ﬁr is produced by the vertical variation of the rotational velocity, the
term AM is the contribution to the convection terms from the vertical variation
of the rotational velocity and AP is the contribution to the pressure terms from
the vertical variation of the rotational velocity.

It is noticed that the term AM is expressed in the transformed coordinates :

X=x, Y=y, Z=Z;”, T=t (2.19)

whered =h+n . In the new coordinates, the fluid domain —hA<z<en is
transformed into the fixed domain: ~1<Z <0 . The relations between the
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derivatives in the old and the new coordinates are

o 0 G

— + d —

o or d(g’" %7

V:V—-— Vv +Z§d—- 2.20
d(en )az (2.20)

o_190

0z doZ

Using this new coordinates make the term AM in a compact form. If this term is
expressed in the original coordinates, it will be of a more complicated form by
noticing the relation (2.15b).

The terms related to77 and Vd in (2.13) reflect the nonlinear and bottom
effects on the convection terms AM . These effects also exit for the pressure
term AP , but contrary to (2.13), they are expressed explicitly in the expression
(2.14) by the terms related to77 and Vd . Neglecting these terms and other
nonlinear terms can make the expression for AP simpler as shown below.

1 —n =
==V [d (B -B)], + O(e0)

=§V2-[fhdzfdthfl,dZ],+0(£O') (2.21)

Analysis of the equations

In order to check the equations derived above, we consider the one
dimensional form of the equations, the term AM in (2.13) becomes for this case

1 A oa N n
an = — [\ (dit, (3,) x +it, (@) 142

1 A 1 n
== (@), dz=—1[ d@,)* a2], (EBY
Applying the transformation (2.20) gives
1 . N2 _1 22
AM =—[ [, @) dz], =—{ [} (] ~51)d ], (3.2

The pressure term AP in (2.22) becomes

AP_——[fdz[’dzf 4, dz],

d — [fdzfdz[ (@, ~7,)dz], (3.3)
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Substituting (3.2) and (3.3) into (2.10b) in one dimensional form and neglecting
the terms R of O(u*) yields

i, +H, +G+%[fh(uf ~uz)dz],

=i—[['hdzfdth(u,~ﬁ,),dz]m (3.4
or

(di), +[du’® + fh(uf -#2)dz], +dG

:[fhdzfdth (u, -ii,)dz],, (3.5)

This is the same as the equations (19) in the paper of Veeramony and Svendsen
(2000) .

The determination of horizontal vorticity for breaking waves

In solving the equations, a vertical distribution of the horizontal vorticity
expressed by s needs to be given. For vertical two dimensional flow,
Veeramony and Svendsen (2000) determine the vertical distribution of vorticity
by solving the vorticity transport equation. For the three dimensional flow
concerned here, it is difficult to adopt this kind of methods directly due to the
time-consuming and the complicate boundary condition for the vorticity on the
free surface in the numerical solution of the three dimensional vorticity transport
equation. So an approximation method needs to be introduced in order to get
the closure of the equations derived above. This will be investigated in the future
researches

Summary

The higher order Boussinesq equations with the inclusion of vorticity are
investigated. First, the equations are derived in details for the horizontal
one-dimension and constant vorticity case. Then, the extension to the
two-dimensional case is given. These derivations show the structure the
Boussinesq equations will have when the whole vorticity field is considered.
The equations are expressed in term of the depth averaged velocity and this is
preferable since this form of equation have the property of conserving the
potential vorticity @,/d (w, is the vertical component of vorticity), other
form of the equations, such as those in term of the velocity at arbitrary level,
does not have this property.
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The dispersion property of the derived equations is discussed and it agrees
with the shallow water approximation of the accurate dispersion relation for the
wave propagating in uniform shear currents.

For the closure of the equations, a vertical distribution of horizontal vorticity
needs to be determined in the future researches
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Appendix
For the velocity potential ¢ on free surface
¢r] =¢(x’y’z’t)lz=q =¢(x’yan3t) (Al)
we have
[%J :%_(é‘ﬂ) on (A2)
ot )y & \0z)., 0
(V9).. = V4, - (—¢) Vi (A3
z=q

here y- (_ ___) Substituting these relations into the boundary condition:
5

0 2
’7+(U(n)+V¢,,) V= ( ¢) (A4)
0z z=n
gives
S W)+ V8 Vn =04V, v,,)(aﬂ’) (A5
7=y
So for the stream function¥ , we have
%=(a—q’) +(9‘5] o1 (A6)
ax ox 2=n az 2=n ax

] )
O ) ey Ox ), Ox

0 o¢, o
—1+ (& )]( "’) +U)+ 20
=1 x ~ Ox
Applying (A.5) to (A.6) yields
oy, __on (A7)

ox ot



