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We formulate a CL-vortex form of surface wave force for a quasi-3D nearshore circulation

model. The CL-vortex force formulation is obtained by applying surface wave equations

to depth-integrated and wave-averaged momentum equations. A new splitting algorithm of

current velocity is used to facilitate the application of wave equations to the wave-averaged

equations. The derivation shows that the CL-vortex term arises from both the wave refraction

by current shear and the wave-current interaction shown in the radiation stress type momentum

equations. In the vertical direction, the equation governing the vertical structure of current

velocity is driven by a surface stress related to wave dissipation. Numerical tests show the

CL-vortex formulation performs identically with the radiation stress formulation in modeling

of rip currents. However, without fully coupling of wave and current models, the CL-vortex

formulation gives a more reasonable result than the radiation stress formulation does.

INTRODUCTION
Recently much attention has been paid to different formulations of surface

wave force in wave-driven ocean and coastal circulations (e.g., McWilliams et
al., 2004, Mellor, 2003, Smith, 2006 and others). Basically, the analytical
expressions for surface wave force and wave-current interaction can be classified
into two types. One is the classical wave ‘radiation stress’ concept presented by
Longuet-Higgins and Stewart (1962, 1964) and many others in depth-integrated
and short wave-averaged equations. Mellor (2003) recently used the same
concept to derive short wave-averaged 3-D equations with a depth-dependent
wave-induced force. A direct application of this kind of depth-dependent
wave-induced force was conducted by Xia et al. (2004) who related the vertical
variation of current to the vertical structure of radiation stresses.

Another type of wave force is the surface wave force initially derived by
Garrett (1976) in the study of Langmuir circulation generation. The wave driving
forces include the wave dissipation term and the wave-averaged vortex forcing
term which has been identified later by Leibovich (1980) and Smith (1980) as the
vertically integrated form of the ’CL vortex-force’ derived by Craik and Leibovich
(1976). Dingemans et al. (1987) also presented a similar formulation of this
type of wave driving force, though the current refraction, that may result in the
vortex-force term, was recognized to give insignificant contributions under the
conditions of slowly varying wave fields. Smith (2006) extended the formulation
of Garrett (1976) to include finite-depth effects and provided some insight into
physical interpretation of each forcing term in depth-integrated equations. A
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depth-dependent wave force of this type can be found in McWilliams et al. (2004)
who showed a series of equations in different time scales for surface waves,
infra-gravity waves and low-frequency currents in a coupled system.

Most recently, Newberger and Allen (2006) applied a similar form
of the CL-vortex formulation to forcing a three-dimensional hydrostatic
primitive-equation model in the surf zone. Their analysis was focused on shallow
water dynamics involving interactions of linear waves with wave-averaged mean
currents. The short wave forcing in their approach consists of a surface stress
and a body force. The surface stress is proportional to the wave energy dissipation
which is basically caused by wave breaking in the surf zone. The body force arises
from the so-called local radiation stresses. Under an assumption of shallow water
currents with linear waves, the body force includes one term that is related to the
vortex force and a second term that is related to gradients of part of the radiation
stress tensor. The vortex force, which is a product of the mean wave momentum
and the vertical component of the depth-averaged mean vorticity vector, is similar
to the “refraction force” in Smith (2006) except that Smith’s refraction force is
evaluated using the mean vorticity at the mean surface. The body force was
uniformly applied to the vertical water column in their three-dimensional model.

Although the consistency in the two types of theoretical formulations can be
found without difficulties, the numerical models based the different wave forcing
formulations may perform differently. Dingemens et al. (1987) pointed out that
the formulation in terms of the wave dissipation yields more trustworthy results
as the radiation stress tensor can be a rapidly varying function of the spatial
coordinates, numerical differentiation can lead to poor results.

Among two- or three-dimensional models of wave-induced nearshore
circulation, a quasi-3D nearshore circulation model developed by Svendsen et
al. (2004) is a simple approach to 3-D modeling of wave-induced nearshore
circulation. The quasi-3D equations reveal three-dimensional dispersion of
momentum in wave-induced nearshore currents, wave-current interaction, and
the contribution of short wave forcing to a solution of vertical current profile.
The objective of this study is to describe the CL-vortex type short wave force
formulation in the quasi-3D model frame.

In the present paper, we re-formulate the quasi-3D nearshore circulation
equations (SHORECIRC equations, Putrevu and Svendsen, 1999) using a new
splitting algorithm of current velocity proposed by Haas et al. (2003). A new
type of wave forcing is derived for both the depth-integrated and wave-averaged
momentum equations and the equation governing the vertical structure of current
velocity. Numerical consistency between two different wave force formulations is
discussed in idealized rip current simulations.

DERIVATION

Split of wave-averaged current velocity
Slightly different from the splitting method used by Putrevu and Svendsen

(1999), the short wave-averaged current velocityVα(z) is split into a ‘undisturbed’
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depth-averaged mean currentVmα and vertical variation of mean currentVdα(z):

Vα(z) = Vmα + Vdα(z) (1)

where

Vmα =
1
h

∫ ζ̄

−h0

ūαdz (2)

or

Vmα =
1
h

(∫ ζ

−h0

uαdz −
∫ ζ

ζ̄

uαdz

)
(3)

and ∫ ζ̄

−h0

Vdαdz = 0 (4)

uα represents the instantaneous horizontal velocity including the wave
component. The first term on the right of (3) is the total volume flux and the
second term is the net wave volume flux:

Qwα =
∫ ζ

ζ̄

uαdz (5)

Notice that Putrevu and Svendsen (1999) used the total volume flux as a main
variable in their split. This splitting method was also used by Haas et al.
(2003) who pointed out that this split is more physical and has advantages in the
simplification of the 3D dispersive mixing terms.

Equations of depth-integrated and wave-averaged current
Following the derivation of Putrevu and Svendsen (1999), the

depth-integrated, short-wave-averaged momentum equations read

∂ζ̄

∂t
+

∂

∂xα
(Vmαh + Qwα) = 0 (6)

and

∂

∂t
(Vmαh) +

∂Qwα

∂t
+

∂

∂xβ
[VmαVmβh + QwαVmβ + VmαQwβ

+
∫ ζ

−h0

VdαVdβdz +
∫ ζ

ζt

(uwαVdβ + Vdαuwβ)dz ]

+
1
ρ

∂Tαβ

∂xβ
+ gh

∂ζ̄

∂xα
− τ s

α

ρ
+

τB
α

ρ
+

1
ρ

∂Sαβ

∂xβ
= 0 (7)

whereτ s
α andτB

α represent the surface stress and bottom stress, respectively. In
(7) the radiation stress is defined by

Sαβ =
∫ ζ

−h0

(ρuwαuwβ + pδαβ)dz − 1
2
ρgh2δαβ (8)
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wherep is the total pressure andδαβ is the Kronecker delta function. Similarly to
Putrevu and Svendsen (1999), we assume thatVdα is approximately constant in
the intervalζ̄ to ζ and thus (4) may be simplified as follows∫ ζ

−h0

Vdαdz ≈
∫ ζ̄

−h0

Vdαdz = 0 (9)

With the same approximation, the integrals in (7) may be written as∫ ζ

−h0

VdαVdβdz+
∫ ζ

ζt

(uwαVdβ + Vdαuwβ)dz ≈
∫ ζ̄

−h0

VdαVdβdz+Vdβ(ζ̄)Qwα+Vdα(ζ̄)Qwβ

(10)
Using (10), (7) is reorganized as

∂

∂t
(Vmαh) +

∂

∂xβ

[
VmαVmβh +

∫ ζ̄

−h0

VdαVdβdz

]

+
1
ρ

∂Tαβ

∂xβ
+ gh

∂ζ̄

∂xα
− τ s

α

ρ
+

τB
α

ρ

+
∂Qwα

∂t
+

∂

∂xβ

[(
Vmβ + Vdβ(ζ̄)

)
Qwα +

(
Vmα + Vdα(ζ̄)

)
Qwβ

]
+

1
ρ

∂Sαβ

∂xβ
= 0 (11)

Notice that the wave-current interaction terms in the third line of (11) include the
mean current value at the mean surface, i.e.,(Vmα +Vdα(ζ̄)) or Vα(ζ̄), rather than
the deviation of the mean current at the surface, as in the equations of Putrevu and
Svendsen (1999).

To connect (11) to wave evolution equations, the radiation stresses may be
expressed using the form evaluated by Longuet-Higgins and Stewart (1962, 1964),
i.e.,

Sαβ = ρQwαCg
β + ρhJδαβ = Ew(

kαCg
β

σ
) + ρhJδαβ (12)

whereEw is the wave energy,kα presents the wave number,Cg
α the wave group

velocity,σ the intrinsic radian frequency and

ρhJ =
1
2
ρh(ū2

w − w̄2) = ρQwα(Cg
α −

1
2
Cα) = Ew(k

Cg

σ
− 1

2
) (13)

Note that the definition ofJ is slightly different from that in Smith (2006) by a
factor ofρ.

Following Smith (2006), we employ the conservation of wave action and wave
crests, i.e.,

∂A

∂t
+

∂

∂xα

(
A(Cg

α + Vα(ζ̄))
)

= −Dw (14)
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and
∂kα

∂t
+

∂

∂xα

(
σ + kβVβ(ζ̄)

)
= 0 (15)

to get a wave momentum evolution equation:

∂Qwα

∂t
+

∂

∂xβ

[
Qwα(Cg

β + Vβ(ζ̄))
]

= −1
ρ
kα(Dw)

−Qwβ
∂Vβ(ζ̄)
∂xα

− J
∂h

∂xα
(16)

whereDw represents wave dissipation caused by wave breaking. In derivation of
(16), the relation betweenQw and wave actionA, i.e.,

Qwα = Akα/ρ (17)

is used. Using (16) to replace the wave-induced terms shown in the third and
fourth lines of (11), we get the mean current equations:

∂

∂t
(Vmαh) +

∂

∂xβ

[
VmαVmβh +

∫ ζ̄

−h0

VdαVdβdz

]

+
1
ρ

∂Tαβ

∂xβ
+ gh

∂ζ̄

∂xα
− τ s

α

ρ
+

τB
α

ρ
− Fwα

ρ
= 0 (18)

whereFwα is the new form of wave force:

Fwα = kαDw + ρQwβ

(
∂Vβ(ζ̄)
∂xα

− ∂Vα(ζ̄)
∂xβ

)
−ρVα(ζ̄)

∂Qwβ

∂xβ
− ρh

∂J

∂xα
(19)

Or its vector form

~Fw = ~kDw + ρ~Qw × (∇× ~V (ζ̄))

−ρ~Vα(ζ̄)(∇ · ~Qw)− ρh∇(J) (20)

It can be seen from the derivation that the vortex term~Qw×(∇× ~V (ζ̄)) arises
from both the wave-current interaction term in (11) and wave refraction by current
shear in (16). The equivalent wave forcing formulation in the radiation stress form
is

~Fw = −ρ
∂ ~Qw

∂t
− ρ∇ ·

(
~V (ζ̄) ~Qw + ~Qw

~V (ζ̄)
)
−∇ · ~S (21)

Without including the wave refraction by current shear (generally shown in wave
equations), the radiation stress formulation (21) would not explicitly show the
vortex term.
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Equation for vertical variation of mean current
Using the same strategy as in Putrevu and Svendsen (1999), we derive the

equation governing the vertical structure ofVdα. By subtracting the mean current
momentum from the 3D wave-averaged equations, the lowest order of the equation
for vertical variation of mean current can be written as

∂Vdα

∂t
− ∂

∂z
(ν

∂Vdα

∂z
) = − 1

ρh
Fwα−

1
ρ
fα−

1
h

Vmα
∂Qwβ

∂xβ
− 1

ρh
(τ s

α− τB
α ) (22)

wherefα is local radiation stress defined by

fα = ρ
∂

∂xβ
(uwαuwβ) + ρ

∂wwuwα

∂z
− ρ

∂w2
w

∂xα
(23)

In shallow water,fα may be evaluated as (Newberger and Allen, 2006)

fα = −ρ

h
Qwβ

(
∂Vβ(ζ̄)
∂xα

− ∂Vα(ζ̄)
∂xβ

)
+ ρ

∂

∂xα

(
J

h

)
(24)

Applying (24) to (22) yields the equation governingVdα in shallow water:

∂Vdα

∂t
− ∂

∂z
(ν

Vdα

∂z
) =

1
ρh

(−kαDw − τ s
α + τB

α ) (25)

(25) can be solved analytically or numerically by applying the surface and
bottom boundary conditions given by Putrevu and Svendsen (1999) and the
condition (4). It should be mentioned that only leading terms are retained in
the derivation of (22) in order to maintain consistency with the SHORECIRC
equations.

NUMERICAL TEST
To make a simple test on the numerical consistency between two different

wave force formulations, we implemented (20) in the 2D mode of SHORECIRC
equations (Svendsen et al., 2004). The lateral mixing caused by vertical variation
of current velocity was not taken into account by neglecting (25) and switching off
the 3D dispersion terms in (18). An unsteady wave-driver developed by Kennedy
and Kirby (2004) was used to provide the circulation model with non-stationary
wave forcing. The model coupling system which can switch to two different wave
force formulations was used in rip current simulations.

We used an idealized bathymetry (Yu and Slinn, 2003) as shown in Figure 1.
A normally incident wave, with a wave period of10s and a wave height of1.8
m, was simulated in the wave model. Wave-current interaction can be modeled
by coupling the wave model and the circulation model each time step. Similar to
the results shown in Yu and Slinn (2003), our results indicate that wave-current
interaction is important in the rip current system. The interaction reduces the
strength of the currents and restricts their offshore extent. When the wave
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Figure 1. Idealized bathymetry in Yu and Slinn (2003)

model and the circulation model are fully coupled, the two different wave force
formulations basically give very similar results as shown in Figure 2. Figure 3
shows the comparison of time-averaged rip current profiles between the radiation
stress formulation (dashed line) and the CL-vortex formulation. The term-by-term
comparisons of the two wave force formulations also indicate that the two different
formulations are basically equivalent in the rip current simulations. Inx-direction,
the dominant term in (21) is−∇· ~S which is shown in Figure 4 (a). The dominant
terms in (20) are1ρ

~kDw and−h∇(J). The sum total of the two terms is shown in
Figure 4(b) which is similar to that in Figure 4 (a). Iny-direction, the dominant

terms in (21) are−ρ∇ ·
(

~V (ζ̄) ~Qw + ~Qw
~V (ζ̄)

)
and−∇ · ~S. The sum total of the

two terms is shown in Figure 4 (c). The dominant term in (20) isρ~Qw×(∇×~V (ζ̄))
and is shown in Figure 4 (d). The comparison between Figures 4 (c) and 4
(d) clearly shows that the effect of the vortex type force seems to occur in the
integration of the two dominant terms in (21), that is similar to the CL-vortex
force in (20).

Without wave-current interaction, however, the two wave force formulations
perform very differently in the rip current simulations. The effect of vortex type
force does not show up in the radiation stress formulation (21). Figure 5 (a) shows
the sum value of the two dominant terms in (21) iny-direction. It differs from
the value calculated from the CL-vortex force and shown in Figure 5 (b). Figure
6 shows a comparison between the time-averaged rip current profiles from the
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Figure 2. Snapshot of current and vorticity (color) field: (a)radiation stress formulation
(b) CL-vortex formulation.

Figure 3. Comparison of time-averaged rip current profiles at x = 220 m
with wave-current interaction (dashed line: radiation stress formulation, solid line:
CL-vortex formulation).
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Figure 4. Comparisons of wave forcing when wave and current are fully coupled (a)
radiation stress formulation in x direction (b) CL-vortex formulation in x direction (c)
radiation stress formulation in y direction (d) CL-vortex formulation in y direction

Figure 5. Comparisons of wave forcing when wave and current are not coupled (a)
radiation stress formulation in y direction (b) CL-vortex formulation in y direction
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Figure 6. Comparison of time-averaged rip current profiles at x = 220 m without
wave-current interaction (dashed line: radiation stress formulation, solid line:
CL-vortex formulation)

radiation stress formulation (dashed line) and the CL-vortex formulation. The
CL-vortex formulation predicts a weaker rip current than the radiation stress
formulation because the CL-vortex forcing plays an role in widening the rip
current neck and thus weakening the strength of the rip current.

CONCLUSIONS
In this study, we described a CL-vortex wave force for a quasi-3D nearshore

circulation model. A new splitting algorithm of current velocity presented in
Haas et al. (2003) is applied to keep aligned with Smith’s (2006) derivation
of the CL-vortex force in general application of wave-induced circulations.
Our derivation shows that the wave force driving the depth-integrated and
wave-averaged momentum equations is the same as in Smith’s derivation with
finite-depth effects included. The new wave formulation includes a wave
dissipation term, a CL-vortex term, a correction term due to mass-flux lost on
non-zero current velocity at surface, and a term described as a hydrostatic pressure
gradient in Smith (2006). In the equation governing the vertical structureVdα, the
force from the short wave contribution only consists of a wave dissipation term.

It is interesting to compare our formulation to the short wave force derived
by Newberger and Allen (2006) in application of a three-dimensional circulation
model in the surf zone. The short wave force in their approach includes a
surface stress caused by wave dissipation and a body force which consists of the
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CL-vortex force and an extra force related to gradients of part of the radiation
stresses. In our application to Quasi-3D equations, both the surface stress and the
body stress (integrated) are included in the depth-integrated and wave-averaged
momentum equations. In the equation governing the vertical structure of current
velocity, the surface stress is the only force from the short wave contribution. Our
results are theoretically consistent with Newberger and Allen (2006).

The numerical consistency in using the different types of wave forces was
discussed in the paper. Simulations of rip current with a idealized bathymetry
show that the two formulations perform identically when wave-current interaction
is included in model coupling. However, if leaving out wave-current interaction,
the CL-vortex formulation gives a result closer to the result with the wave-current
interaction than the radiation stress formulation does. The vortex forcing is
significant in the rip current case with a fast-varying wave field. It plays an
important role in widening the rip current neck and thus weakening the strength
of rip current.

Our further study may include several developments and applications of the
new wave formulations, such as, 1) implementation of the full set of equations,
i.e., (18) and (25), to take into account 3D dispersion effects; 2) quantitative
comparison between models with different wave force formulations; 3) evaluation
of model results using measurement data; 4) optimization of numerical time step
used in wave-current model coupling; 5) model performance in predictions of
various nearshore phenomena such as longshore currents, infra-gravity waves, and
shear waves.

ACKNOWLEDGMENTS
This study was supported by Office of Naval Research, Coastal Geoscience

Program under grant N00014-05-1-0423.

REFERENCES

Craik, A. D. D. and S. Leibovich, 1976, A rational model for Langmuir
circulations,J. Fluid Mech., 73, 401-426.

Dingemans, M. W., A. C. Radder, and H. J. de Vriend, 1987, Computation of the
driving forces of wave induced currents,Coastal Engineering, 11, 539-563.

Garrett, C., 1976, Generation of Langmuir circulations by surface waves - A
feedback mechanism,J. Mar. Res., 34, 117-130.

Haas, K. A., I. A. Svendsen, M. C. Haller, and Q. Zhao, 2003,
Quasi-three-dimensional modeling of rip current systems,J. Geophys. Res.,
108, C7, 3216, doi:10.1029/2001JC001313.

Hasselmann, K., 1971, On the mass and momentum transfer between short
gravity waves and larger-scale motions,J. Fluid Mech., 50, 189-205.

Kennedy, A. and T. J. Kirby, 2003, An unsteady wave driver for narrow-banded
waves: modeling nearshore circulation driven by wave groups,Coastal
Engrng, 48, 257-275.

11



Leibovich, S., 1980, On wave-current interaction theories of Langmuir
circulations,J. Fluid Mech.,99, 715-724.

Longuet-Higgins, M. S. and R. W. Stewart, 1962, Radiation stress and mass
transport in gravity waves, with application to ‘surf-beats’,J. Fluid Mech.,
13, 481-504.

Longuet-Higgins, M. S. and R. W. Stewart, 1964, Radiation stress in water
waves; a physical discussion, with applications,Deep Sea Res., 11,
529-562.

McWilliams, J. C., J. M. Restrepo, and E. M. Lane, 2004, An asymptotic theory
for the interaction of waves and currents in coastal waters,J. Fluid Mech.,
511, 135-178.

Mellor, G., 2003, The three-dimensional current and surface wave equations,J.
Phys. Oceanogr., 33, 1978 - 1989.

Newberger P. A. and J. S. Allen, 2006, Forcing a three-dimensional, hydrostatic
primitive-equation model for application in the surf zone, Part 1:
Formulation, submitted toJ. Geophys. Res.

Phillips, O. M., 1977, The Dynamics of the Upper Ocean. 2nd ed. Vol.
1, Cambridge Monographs on Mechanics and Applied Mathematics,
Cambridge University Press, 336 pp.

Putrevu, U. and I. A. Svendsen, 1999, Three-dimensional dispersion of
momentum in wave-induced nearshore currents,Eur. J. Mech. B/Fluids,
83-101.

Smith, J. A., 1980, Wave, currents, and Langmuir circulation, Dalhousie
University.

Smith J. A., 2006, Wave-current interactions in finite-depth,J. Phys. Oceanogr.,
in press.

Svendsen I. A., K. A. Haas, and Q. Zhao, 2004, Quasi-3D Nearshore Circulation
Model SHORECIRC: Version 2.0, Research Report, Center for Applied
Coastal Research, University of Delaware.

Xia, H., Z. Xia, and L. Zhu, 2004, Vertical variation in radiation stress and
wave-induced current,Coastal Engrng., 51, 309-321.

Yu, J. and D. N. Slinn, 2003, Effects of wave-current interaction on rip currents,
J. Geophys. Res., Vol. 108, C3, 3088, doi: 10.1029/2001JC001105.

12



KEYWORDS – ICCE 2006

PAPER TITLE: Quasi-3D Nearshore Circulation Equations: a CL-Vortex Force
Formulation
Authors: Fengyan Shi, James T. Kirby, and Kevin Haas
Abstract number 1089

Nearshore model
CL-vortex formulation
Wave-current interaction
Short wave force
Nearshore circulation
Rip current

13


