A CURVILINEAR BOUSSINESQ MODEL AND ITS APPLICATION
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Abstract: In this paper, a curvilinear Boussinesq model is further improved in order
to be used in more practical applications. Firstly, the energy dissipation due to wave
breaking is considered by introducing an eddy viscosity term into momentum equations.
Secondly, the slot technique is introduced into the curvilinear model for simulations of
wave run-up/run-down in swash zones. Thirdly, Smagorinsky subgrid lateral turbulent
mixing is utilized to account for the effect of the resultant eddy viscosity on the wave-
generated underlying flow. In addition, a TMA spectral wave maker is implemented in
the model for simulations of irregular waves. Finally, the model is used to simulate wave
propagation in Ponce de Leon Inlet. Model/data comparisons show the fully nonlinear
Boussinesq model give accurate results for nonlinear wave transformation over irregular
bathymetry. It is also shown that the curvilinear model is an efficient model for wave
computations in large computational regions with complex geometry.

INTRODUCTION

Boussinesq models for surface gravity waves have been shown to provide an
accurate tools for simulations of wave evolution in coastal regions. Recent ad-
vances both in the Boussinesq equations with improved dispersion relationships
in relatively deep water (see, e.g., Madsen and Sgrensen, 1992; Nwogu, 1993; Wei
et al., 1995 ) and in computer technology allow the use of Boussinesq models
in large nearshore regions. The incorporation of wave breaking and wave runup
into Boussinesq models (Karambas and Koutitas, 1992; Schéffer et al.,, 1993;
Madsen et al., 1997; and Kennedy et al., 2000) also allows these models to be
applied to surf zones and swash zones. In addition, Boussinesq models with either
structured or unstructured computational grids were developed for computations
in complex nearshore domains. Sgrensen and Sgrensen (2000) carried out a fi-
nite element Boussinesq model based on the equations derived by Madsen and
Segrensen (1992). A finite element Boussinesq model and a finite difference curvi-
linear Boussinesq model based on Beji and Nadaoka’s equations were developed
by Li et al. (1999, 2001). Shi et al.(2001) developed a finite difference Boussinesq
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model in generalized curvilinear coordinates based on fully nonlinear Boussinesq
equations (Wei et al., 1995). Spatially varying and boundary-fitted grids were
adopted in the case studies of the model which show that, compared to the Carte-
sian version of Boussinesq model, the curvilinear model has better efficiency and
capability to deal with complex geometry in some complicated nearshore domains.

Many practical applications of Boussinesq models involve calculations of wave
breaking, wave run-up/run-down, wave-induced currents and random wave prop-
agations. In order to use the curvilinear Boussinesq model in more practical
applications, several improvements are made in the present paper based on the
existing curvilinear Boussinesq model developed by Shi et al. (2001). The energy
dissipation due to wave breaking is considered by introducing an eddy viscosity
term into momentum equations. Smagorinsky-type subgrid terms are employed
to model the horizontally distributed eddy viscosity resulting from subgrid tur-
bulent processes. To simulate swash motions, a slot technique is implemented in
the model for simulations of wave run-up and run-down. A TMA shallow water
wave spectrum (Bouws et al., 1985) and a wrapped normal directional spreading
function (Borgman, 1984) are used for directional spectral wave generations in
the present model.

To demonstrate the capability and accuracy of the present model to calculate
nonlinear waves in complicated domain, the model is then used in wave simu-
lations in Ponce De Leon Inlet, Florida where a 1:100-scale physical model has
been conducted at the U.S. Army Engineer Research & Development Center.
The self-adaptive grid generation method (Brackbill et al., 1982) is adopted to
generate a nonorthogonal grid which has a good resolution near the shoreline and
fits well the complicated boundaries like the jetty and curved coastlines. The
simulated waves include monochromatic waves, spectral waves, normally incident
waves and obliquely incident waves. The calculated wave heights are compared
with measured data at gauge points in two measurement arrays. For strong non-
linear wave cases, comparisons of skewness and asymmetry of waves are made
between numerical results and measurement data. It is shown that the curvilin-
ear model is efficient and accurate model for nonlinear wave simulations in large
complicated coastal areas.

CURVILINEAR BOUSSINESQ MODEL

Governing equations in generalized curvilinear coordinates
The fully nonlinear Boussinesq equations (Wei et al., 1995) can be written in

the tensor-invariant forms after a generalized coordinate transformation (Shi et
al., 2001):
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where k,l = 1 and 2; (u',u?) are the contravariant components of a reference
velocity at a reference elevation z,; (x!,2?) are new independent variables in the
transformed image domain; 8 and A are two dimensionless multipliers introduced
for the treatment of shoreline run-up. /go is the Jacobi value; (), represents the
covariant spatial derivative while !* represents the contravariant spatial derivative.
V[ and VF are the dispersive Boussinesq terms that can be found in Shi et al.
(2001).
In equation (3), Rf and R* represent the breaking terms and the subgrid
mixing terms respectively.

+ gn* + 'l + VI + VE + Ry + RE =0, (3)

Energy dissipation due to wave breaking and subgrid mixing
The energy dissipation due to wave breaking in shallow water is modeled by
using the momentum mixing terms which can be written in a general form as

%div(HuD) (4)

where v is the eddy viscosity localized on the front face of the breaking wave (See
Kennedy et al., 1999 and Chen et al., 1999); D is the rate-of-strain tensor defined
by

D= %[gmdu + (gradu)] (5)

in which (gradu)? is the transpose of gradu. The tensor-invariant forms of the
diffusion terms in generalized curvilinear coordinates can be expressed as
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where F;?Z- represents the Christoffel symbol of the second kind and

+vD7'TY (6)
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The subgrid mixing terms are in the same form as shown in (4) except that v
should be replace by the eddy viscosity due to the subgrid turbulence v;:

Vs = ey/q0|T| = ¢/g0(TTy;)"/? (8)

where 7" is the rate-of-strain tensor of the velocity of the wave-generated current
U and can be written as

T = %[gmdU + (gradU)7] 9)
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Slot technique

Following the rectangular version of the fully nonlinear Boussinesq model
(Chen et al. ,1999), a slot technique is implemented in the curvilinear model. The
dimensionless multipliers 5 and A in equation (1) and (2) are defined exactly as
in Chen et al. (1999). The implementation is also the same as in the rectangular
version except that the slots are always along the curvilinear coordinate lines.

Implementation of TMA spectrum wavemaker

A TMA shallow water wave spectrum (Bouws et al., 1985) and a wrapped-
normal directional spreading function (Borgman, 1984) are used in the present
model. The combined the spectrum function can be expressed as

S(f,h,0) = ErpaG(6) (10)
In (10), Erpra is the TMA shallow water frequency distribution as follows
Erua(f,h) = ag? f752m) ™40 (2n f, h)e /A1) qearl=U 1 H=1%/20 (17

in which f, is the peak frequency. o, ® and o are coefficients and can be found
in Bouws et al. (1985). «y presents frequency spreading parameter which is used
in both the laboratory experiments and the present numerical simulations.

G(0) is the wrapped normal directional spreading function written as

1 1 N (n09)2

G(8) = 5+ 3 eap|-

|cosnd (12)

where gy denotes circular deviation of the wrapped normal spreading function. To
avoid the underflow, N < 10/0y in the present paper. The directional spectrum
is divided into several components with random phases and equal energy at each
frequency block. The source function technique (Wei, et al., 1999) is then used
for each component.

APPLICATION

As a practical application, wave simulations in Ponce de Leon Inlet are carried
out in the present paper. The bathymetry of Ponce de Leon Inlet is represented
in a 1:100-scale physical model located at the U.S. Army Engineer Research &
Development Center. The topography is derived from a 1994 airborne laser (lidar)
survey and partial measurements in the physical model. Wave data were collected
with 30 wave gauges, shown in Figure 1 (circles), at a sampling frequency of 25 Hz.
Twenty-four gauges were placed in two linear arrays. One array was positioned
across the outer lobe of the ebb shoal (offshore array) and another closer to shore
(nearshore array). Smith and Harkins (1997) used three numerical wave models,
RCPWAVE, REF/DIF, and STWAVE, in these studies and made evaluations
of the three models against the measured data. It was found that model errors
increase markedly with increases in wave nonlinearity because the three numerical
models rely on linear wave theory.
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Curvilinear grid and model setup

A boundary-fitted grid is generated using a Matlab code for grid generation
developed at the Center for Applied Coastal Research, University of Delaware
and is shown in Figure 2. The grid dimension is 401 x 781. The finer resolution
is used near the jetty, coastlines and the inlet in order to resolve structures and
short waves in shallow water. The minimum grid size is 1.39m near the shoreline
on right side of the jetty and the maximum grid size in the offshore direction is
5.4m.

To minimize reflected waves from lateral boundaries and the artificial bound-
ary inside the inlet, sponge layers are put at the boundaries as in the laboratory
experiments. Relatively thin (five points) and weak sponge layers are also used
around the jetty to partially absorb waves. It is found that the thin sponge layers
do not affect significantly the results at the measurement gauges.

Totally 18 cases either with monochromatic input waves or with TMA spectral
waves are carried out in this study. Table 1 presents a list of incident wave
conditions generated in the numerical model. There are totally 26 cases done in
the physical model. We generally choose a typical case from the cases with the
similar incident wave conditions. We also skip the cases with very large wave
height in which we find some difficulties to generate ideal incident waves by using
the wave maker.

The model is firstly calibrated using the measurement data at the two gauges
in front of the wave-maker. Each case is run for about 150 — 200 wave periods.

Table 1.Cases with different incident wave conditions

Case | H(m) T(sec) 6(deg) v om(deg)
01 0.95 8 0 Mono
02 1.01 8 0 3.3 30
03 1.15 8 -30  Mono
04 1.05 8 -30 3.3 30
05 | 1.05 8 30 3.3 30
06 | 1.32 8 30  Mono
07 | 0.93 10 0 Mono
08 0.95 10 0 2.0 20
09 0.87 10 -30  Mono
10 0.93 10 -30 2.0 20
11 0.74 10 30 Mono
12 0.84 10 30 2.0 20
13 0.78 15 0 Mono
14 0.98 15 0 7.0 10
15 0.90 15 -30  Mono
16 0.73 15 -30 7.0 10
17 0.77 15 30 Mono
18 0.76 15 30 7.0 10
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Fig. 3. Snapshot of wave surface elevation (Case 13)
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Fig. 4. Wave height comparisons (Case 13. Circle: data, solid line: model).

Model results and model/data comparisons

The cases listed on Table 1 include monochromatic waves and random waves
with normal incidence or oblique incidence. Here we only show some typical cases
that demonstrate capabilities of the present model to calculate nonlinear waves
and to deal with the complex geometry.

Figure 3 shows a snapshot of surface elevations of normally incident monochro-
matic waves with a period of 15 second (Case 13). This long period wave case
shows a strong nonlinear wave property which is represented by the obvious sec-
ond harmonic waves in the nearshore region. Figure 3 also shows clearly the wave
reflection on the upward side of the jetty, wave diffraction on the leeward side,
wave scattering from the tip of the jetty and refractive wave focusing in the area
to the right of the inlet mouth. Figure 4 shows the comparisons of wave heights
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Fig. 5. Snapshot of wave surface elevation (Case 14)
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Fig. 6. Wave height comparisons (Case 14. Circle: data, solid line:model).

between model results and measurement data. It is shown that the Boussinesq
model predicts well the bathymetric influences on wave transformation and wave
focusing feature.

A spectral wave case with the peak period of 15 seconds (Case 14) is shown
in figure 5. The figure presents some typical phenomena of directional spectral
waves, like that the short crest waves offshore become long crest waves as they
are propagating to the shoreline, wave refraction and focusing are less obvious
than those in the monochromatic wave cases. The wave height comparisons in
figure 6 show good agreements between data and model results and also show the
smoother wave height distributions than that in the monochromatic wave case.

For the most obliquely incident wave cases, fairly good agreements are also
obtained from the model/data comparisons. Both measurement and numerical
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Fig. 7. Comparisons of skewness and asymmetry (Case 14).

results show that the locations of maximum wave heights caused by wave focusing
shift to the right or left hand side in both offshore array and nearshore array in
the cases of the obliquely incident waves.

Kirby and Dalrymple (1994) state that the models based on Stokes theory
becomes invalid when the Ursell number exceeds 40. For the cases with a long
period and a large wave height, 7" = 15s, H = 0.98m, for example, the Ursell
number is nearly 40 at offshore array and about 200 at the nearshore array. The
Stockes wave models are invalid for this case. To present the capability of the
present model to calculate nonlinear waves, the data/model comparisons of skew-
ness and asymmetry of waves are made for strong nonlinear wave cases. Figure
7 shows the good agreements in the comparisons of skewness and asymmetry
between the numerical results and the measurements in Case 14.

CONCLUSION

The curvilinear Boussinesq model based on the fully nonlinear equations is
further improved by adding the wave breaking term, Smagorinsky subgrid mixing
term and parameters used for the slot technique into the model. A TMA spectral
wave maker is implemented for simulations of irregular waves. The improvements
make the curvilinear model applicable to more practical computations in irregular
shaped domains. As a practical application, wave simulations in Ponce de Leon
Inlet are conducted in the paper. Model/Data comparisons are made and fairly
good agreements are obtained.
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