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this case the subharmonic transition takes place earlier (f &~ 5 hrs.). It is ev-
ident from the time series and spatial representations (see Figure 8) that the
transition occurs much like previously discussed. One of the disturbances gains
energy and consequently slows down. It can clearly be seen that the weaker but
faster disturbances behind it merge into the high amplitude wave. It can also
be observed that the small amplitude wave in front speeds away from the high
amplitude wave. The resulting wave pattern has a wavelength equal to the total
domain width and exhibits strong offshore directed velocities.
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Figure 7: ND = 4, Time Series of v and v at « = L and y = 0.5L,

Summary and Future Work

In this study, a comprehensive model has been developed with the objective
of studying low frequency motions in the surf and swash zones. This model
has been used to study instabilities in the longshore current. Results are in
quantitative agreement with the results by Allen et al. (1995) and in qualitative
agreement with Falqués et al. (1994). As both studies incorporated the rigid lid
assumption, the agreement of their results with the results of the present study
confirms that the rigid lid approximation is valid.

It can be seen that the long term evolution of instabilities in the longshore
current in the domain considered here is strongly dominated by subharmonic
transitions. These transitions occur in the form of vortex pairing and subse-
quent reduction in the number of waves evident. The resulting flow structures
are longshore progressive and exhibit strong offshore directed velocities. These
results are intriguing and possibly suggestive of a mechanism for formation of
migrating rip currents.

However, it is evident that the use of more realistic bottom topographies in-
cluding bars and longshore non-uniformities is necessary to compare the trends in
the results to observations. Also of interest are the interactions of these motions
with other low frequency motions and the effect of longshore non-uniform forcing.

Acknowledgments The authors would like to thank Dr. Uday Putrevu for
providing the software used to obtain the linear solutions. This research has
been sponsored by the Office of Naval Research Coastal Sciences Program.
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amplitude and consequently slows down. The smaller amplitude disturbance
behind it catches up with the larger amplitude disturbance and merges into it,
forming a circulation pattern with strong offshore directed flow.
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Figure 5: ND = 2, Time Series of v and v at = L and y = 0.5L,
(a) t=9.111 hrs (b) t=9.111 hrs

0 200 tié).%BQ hrs 600 800 0 200 ti&%sg hrs 600 800

0 200 t=4é).%44 hrs 600 800

0 200 400 600 800 O 200 400 600 800
y (m) y (m)
Figure 6: ND = 2, (a) Contour plot of potential vorticity (solid for ¢ > 0, dashed

for ¢ < 0) (b) Circulation pattern

Results for L, = 4 X (27 /k).

Now the domain is four times as wide as the length of the initially most unsta-
ble wave. Figure 7 shows the growth of the initially most unstable wavenumber.
Again, we observe that waves with higher amplitudes have longer periods. In



and form a final steady wave of modulated amplitude. It can be seen that the
initial perturbations in u grow to a maximum amplitude of about 20% of the
maximum longshore current. This is in agreement with observations in the field
and in the laboratory. The perturbations in v grow to an amplitude of about
50% of the maximum longshore current. We can also see a shift in the mean
longshore current at this location. The water surface elevation 5 also grows to
a finite amplitude, however this amplitude is very small (O(1 mm)). All three
time series show that the waves with the highest amplitudes have larger periods,
suggesting that the larger waves travel slower.

Results for the velocity components are in quantitative agreement with those
by Allen et al. (1995) obtained using the rigid lid assumption. The results also
qualitatively correspond to computations carried out by Falqués et al. (1994)
for a different current profile using the rigid lid assumption. As computations
in this study show that n only reaches values of O(1 mm), it can be concluded
that the rigid lid assumption is indeed very reasonable for this case. Therefore,
results for the water surface elevation will not be shown in the remainder of this

paper.
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Figure 4: ND =1, Time Series of u, v and n at + = L and y = 0.5L,
Results for L, = 2 X (2w /k).

In this case the domain is twice as wide as the length of the initially most
unstable wave. Therefore, waves with wavenumbers k/2, k, 3k/2, 2k, ... can exist
in the domain. Time series of v and v given in Figure 5 show that the behavior is
initially very similar to that of the previous case. The amplitudes equilibrate and
form a final steady wave of modulated amplitude. However, after about three
modulation cycles at ¢ &~ 9 hrs. these waves undergo a subharmonic transition
and evolve into propagating disturbances with the wavenumber k/2.

This evolution can be observed in the sequence of snapshots given in Fig-
ure 6. This figure depicts contour plots of the potential vorticity as well as plots
of the circulation pattern. The disturbances in these plots are traveling in the
+y direction. It can be seen that one of the two disturbances develops a larger



and current profile show that the wavelength A associated with the most unstable
mode is 450 m.

The current profile given in Equation (7) is also adopted in the present study
so that comparisons to Allen et al. ’s (1995) results can be made. Such compar-
isons will aid in the identification of the importance of the rigid lid assumption,
which is used in Allen et al’s (1995) study but not in the present study. It
should be noted that the bottom and current profiles are not compatible but,
nevertheless, are expected to convey an idea about the main features of the
instability.

In this study, a fixed friction coefficient g of 0.006 m/s is used. This value
was chosen in light of results by Dodd et al. (1992) and Allen et al. (1995).
The offshore boundary is placed at L, = 360 m. The width of the domain in the
longshore direction is set such that

L, = ND x (2%) , (8)

where k is the linearly most unstable wavenumber given by (2x/)X) and ND is
an integer. Due to the periodicity condition in the y direction, the choice of
ND dictates the wavenumbers that can exist in the domain. For ND = 1 only
the most unstable wavenumber k and its harmonics can exist in the domain. If
ND = 2 is used, waves with wavenumbers k/2,3k/2,5k/2, ... are also allowed to
exist. Therefore, as ND is increased, the wavenumber spectrum is more densely
populated, effectively simulating a continuous spectrum.

The initial condition to the model is obtained using the linear solution by
Putrevu and Svendsen (1992) for the perturbation velocities u; and v;. The
initial velocities and water surface elevation are then prescribed as follows:

u(z,y,0) = ewlx,y)
v(x,y,0) = V(z)+ ev(z,y)
77(51?7?170) = 07 (9)

where ¢ is of O(107?).
Information about the longshore scale of the motion can be obtained by inves-
tigating the effect of the chosen domain width. This is achieved by successively
increasing ND. In the following, time series at (x,y) = (L,0.5L,), contour plots

of the potential vorticity
Uy — Uy

h+n
and plots of circulation patterns will be shown for ND =1,2 and 4.

q= (10)

Results for L, = 1 X (27 /k).

Time series of u, v and n at + = L and y = 0.5L, given in Figure 4 show
that the initial perturbations in the most unstable mode grow to finite amplitude
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n as a function of offshore distance every 1.6 seconds, with ¢ = 0 sec correspond-
ing to the maximum rundown position and ¢t = 19.2 sec corresponding to the
maximum runup position. The comparison with the exact solution is very good.

The second application involves solitary wave runup on a bay with a slop-
ing bottom. Computations for this case have previously been carried out by
Zelt (1986) using a fully Lagrangian finite element model, and results show pro-
nounced two dimensional runup. Figure 3b shows time series of the runup in the
cross-shore direction at different locations along the bay, where y = 0 denotes
the midpoint of the bay. The present model compares well with the numerical

solution by Zelt (1986).
(a)
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Figure 3: (a) Runup in 1D: Snapshots with At = 1.6 sec of 5 versus x. Exact
solution (dotted), present model (solid).

(b) Runup in 2D: Time series of runup along y. Zelt (solid), present model
(dashed).

Instabilities in the Longshore Current

In order to simulate growth of shear waves to finite amplitude, a plane beach
geometry with a slope of m = 0.05 is chosen. This bottom slope is similar to an
average slope of the bathymetry at SUPERDUCK. Furthermore, this bathymetry
has also been used by Allen et al. (1995) in conjunction with a frictionally
balanced current profile in the form

V(e = Catesp(~ (1)), (7)

with the parameters ' and « chosen such that a maximum current velocity of
1 m/s occurs at * = 90 m. Linear instability calculations for this bathymetry



at the boundary are the longshore characteristic v = v and the outgoing charac-
teristic o = u+2c. However, the incoming characteristic 3; = u—2¢ is unknown
as u and ¢ are unknown. By assuming that the outgoing wave is of permanent
form, we can impose a condition on the particle velocity: |(j| = 2¢ — 2¢p. Using

~ 2
the geometric argument |U| = u? + v? we can then write

4(c—cp)? = u® +0° (5)

Also using
By = u+ 2¢ (6)
the resulting system of two equations in the two unknowns u and ¢ can be
straightforwardly solved and the incoming characteristic f; = u — 2¢ can be

specified at the offshore boundary.
Numerical Method

Given an initial condition in the water surface elevation n and the velocities u
and v, the governing equations are integrated in time using an explicit third order
Adams-Bashforth scheme. The spatial derivatives in the horizontal directions
are computed using a spectral collocation scheme. One advantage to using such
a scheme is the increased accuracy of the solution since no truncation errors
(i.e. dispersion or dissipation errors) are made. Another advantage is the rapid
spectral convergence of the solution. The error in the solution is approximately
halved when an additional grid point is added. In contrast, the use of finite
difference schemes requires doubling the number of grid points in order to halve
the error.

Fourier collocation is used in the longshore direction r with equally spaced col-
location points. Chebyshev collocation is used in the offshore direction s. The
collocation points s; (1 = 1, ...,N) are chosen as the reversed Gauss-Lobatto
points given by s; = — cos % This choice ensures that the grid points in the
physical domain are concentrated within the surf zone with the highest concen-
tration close to the shoreline.

Falqués and Iranzo (1992, 1994) have applied Chebyshev collocation in con-
junction with Fourier collocation to several low frequency surf zone motions and
reported the adequacy and efficiency of the method for edge wave or shear wave
calculations.

Applications

In this section an analytical solution for a single wave runup on a sloping
beach by Carrier and Greenspan (1958) is used to verify the accuracy of the
shoreline treatment. In this simulation the model domain extends to infinity in
the offshore direction. Figure 3a shows snapshots of the water surface elevation



is given by ,
T =0+ C(yvt)e_a¢ ) y =1 (3)

A stationary orthogonal grid in the (¢,¢) domain corresponds to a physical
grid that is following the shoreline (see Figure 2). The movement of the grid is
damped out exponentially with offshore distance so that the grid is stationary
at a certain distance offshore which is dictated by the value of the parameter
a. At locations further offshore, the physical grid and the intermediate grid are
identical. As a result of the transformation, the derivatives in the governing
equations are altered, resulting in a few addition?pl terms.
y

A
A L

Ly y

\\
[/
= | . -

q) L Ly X L Ly q)

Figure 2: Shoreline Boundary Condition: Transformation from the physical to
the intermediate domain

The intermediate grid in the variables ¢ € [0, L] and ¢ € [0, L,] obtained
above is at this step mapped onto a computational grid in the variables s € [—1, 1]
and r € [0, L,]. The coordinate transformation

1+ s

’
Sg — S

¢=1 = (4)
is used. The value of the parameter sq is dictated by the location of the offshore
boundary. If the offshore boundary is located at infinity so equals unity. In this
case a physical domain in the shape of a semi-infinite strip is modeled while the

computations are carried out in a box-shaped domain. On the other hand, for a
finite offshore width s > 1.

Offshore Open Boundary Condition

Any wave reaching the offshore boundary should be allowed to leave the do-
main with no or minor reflection. Therefore, a transmitting boundary condition
must be used. In this study the treatment of the offshore boundary is carried
out following Van Dongeren et al. (1994), who reported reflection coefficients
on the order of 0.1%. The method is applied with only minor modifications. A
brief summary will be given here; the reader is referred to Van Dongeren et al.
(1994) and the references therein for details.

The particle velocity U associated with an outgoing wave can be expressed in
terms of its offshore component v and longshore component v. Known quantities



damping in the form of bottom friction.

e+ [u(h + )l + [o(h+ 1)), =0

U + Uy + VUy = — Ny + Ty — ﬁu

h

v+ uvy +ovy = —gny + 7y — %v (1)

Here, n is the water surface elevation above the mean water level, & is the still
water depth, u and v are the short wave averaged velocity components in the
x and y directions, respectively, where x points offshore and 3 points in the
longshore direction. The parameters 7, and 7, represent the effect of short wave
forcing in the x and y directions, respectively. Furthermore, a linear bottom
friction term is incorporated in both horizontal directions.

The domain in which these equations are solved is bounded by a curvilinear
moving shoreline at @ = ((y,?) and by an open boundary at @ = L,. The breaker
line is denoted by L. Periodicity is assumed in the y direction.

It is more convenient to impose the onshore and offshore boundary conditions
if the governing equations are written in characteristic form. Algebraic manip-
ulation of the continuity and momentum equations results in three equations in
the unknown characteristic variables 1, 3, and ~.

6115 + (u - C)ﬂll, + Uﬂly — vy = 200001, —+ Ty — ﬁu

h
6215 + (u + C)ﬂll, + Uﬂzy + Cuy = 200001, —+ Ty — %u
L
Vet ety = —gny+ 7= . (2)

Here, ¢ is the nonlinear shallow water wave speed 1/g(h 4 1) and ¢ is the linear

shallow water wave speed \/gh. Note that in the absence of longshore variability,
forcing and damping, the above equations reduce to uncoupled one-way wave
equations. The characteristic variables are given by 1 = u — 2¢ traveling in the
—x direction, fy = u + 2¢ traveling in the +x direction, and 4 = v traveling in
the £y direction.

Treatment of Moving Shoreline

The problem at hand consists of solving a set of well-known governing equa-
tions in a complicated physical domain bounded by one curvilinear moving
boundary and three stationary boundaries. However, the variable physical do-
main can be mapped onto a new stationary domain using a simple coordinate
transformation. Hence, the problem can be reduced to solving the set of govern-
ing equations with some extra terms in a rectangular domain with four stationary
boundaries—a much simpler task.

The coordinate transformation from the physical variables @ € [((y,t), L]
and y € [0, L,] to the intermediate variables ¢ € [0, L,] and ¢ € [0, L,] used here



Bowen and Holman (1989) constructed a linearized analytical model by as-
suming a simplified bottom topography and current field, inviscid flow and a
rigid lid and attributed these disturbances to instabilities in the longshore cur-
rent. These instabilities were found to be possibly linked to the seaward shear
of the longshore current profile and were, therefore, termed shear waves. Subse-
quent investigators such as Dodd et al. (1992), Putrevu and Svendsen (1992),
Dodd and Thornton (1992), Dodd (1994), Falqués and Iranzo (1994), Falqués et
al. (1994) and Allen et al. (1995) worked on lifting the limitations on Bowen
and Holman’s (1989) model.

Figure 1: (a) Wavenumber-frequency spectrum for longshore velocity, SUPER-
DUCK field experiment (b) Time series of longshore velocity (from Oltman-Shay
et al., 1989).

Returning to Figure 1, it can be noted that signatures of a variety of low
frequency motions are visible in the wavenumber-frequency spectrum. These in-
clude wave induced longshore currents, gravity waves such as edge waves or leaky
waves, as well as vorticity waves such as shear waves. The simultaneous presence
and importance of all these motions dictates the necessity to formulate a robust
and comprehensive model in order to focus on surf zone as well as swash zone
dynamics.

Governing Equations

In this study, a two dimensional horizontal model of the short wave averaged
continuity and momentum equations is developed. The governing equations,
given below, are the shallow water equations with additional terms to include
the effects of temporally and spatially varying forcing due to incident waves and



Finite Amplitude Shear Wave Instabilities

H. Tuba Ozkan and James T. Kirby ?
Abstract

The growth to finite amplitude of instabilities in a longshore current is stud-
ied using a two dimensional horizontal model of the continuity and momentum
equations. Spatial derivatives contained in these equations are computed using
spectral collocation methods. A high-order time integration scheme is incorpo-
rated to compute the time evolution of the velocities and water surface elevation
given initial conditions. The model domain extends from the shoreline to a finite
distance offshore and is finite in the longshore direction. A curvilinear moving
boundary condition is incorporated at the shoreline and is tested using solutions
for one and two dimensional wave runup. A transmitting boundary is constructed
offshore and periodicity is assumed on the longshore boundaries. The model is
then utilized to study the nonlinear evolution of shear waves on a plane beach.
It is seen that in this environment, long term evolution of the shear wave is
strongly dominated by subharmonic transitions that give flow structures that
could be characterized as migrating rip currents.

Introduction

Shear waves were first identified in field data from the SUPERDUCK exper-
iment. Data from this experiment showed the presence of energetic, longshore-
progressive wave-like disturbances that typically have frequencies that fall in the
lower range of the infra-gravity band and wavenumbers that are much larger than
that of a mode zero edge wave (Oltman-Shay et al., 1989). The wavenumber-
frequency spectrum of the measured longshore velocity in the SUPERDUCK
experiment (see Figure la) shows the range in which these disturbances occur
and their non-dispersive character. A look at the time series of the longshore
velocity (see Figure 1b) also confirms the presence of these low frequency oscil-
lations. More recently, these waves have also been observed in the laboratory

(Reniers et al., 1994).
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