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CHAPTER 35

Hybrid Frequency-Domain KdV Equation
for Random Wave Transformation

Hajime Mase!, M. ASCE, and James T. Kirby2, M. ASCE

ABSTRACT: Thix paper develops a hybrid model for random wave transformation by
emiploying a modified spectral model of the KdV equation and a probabilistic bore-type wave
breaking model, and compares the numerical predictions with experimental observations. Main
resubts are as follows: 1) Onginal frequency-domain KdV cquation overestimales energy
densities, due to over-shoaling term by Green's law in the equation, even in a region where
wave breaking is not seen; 2) Modification of the original KdV equation in order to represent
shoaling for lincar-dispersive component waves leads to better predictions in the non-breaking
region, 3) Damping coefficients in the model equation, either estimated from measured spectral
densities or the numerically predicted, are in inverse proportion to the water depth and in
proportion to the square of frequency, similar to the viscous dampimng term of the Burgers
equation; 4) The hybrid model developed here can predict transformations of random waves
satisfactorily, as indicated by companson of energy spectra, representative wave heights,
periods, and crest heights,

INTRODUCTION

The Boussinesq equations include the effects of weak dispersion and nonlinearity
under the condition of 12 = (koho)2 <<1, &£ = ap/hy<<1, and O(p*) = O(¢) where ko, Jiy,
ao are the characteristic wave number, the water depth, and the wave amplitude
(Peregrine, 1967, Madsen and Mei, 1969), and are a uscful tool for predicting the
transformation of shatlow water waves. The Boussinesq type equations with a damping
term introduced to simulate a turbulence dissipation can predict the change of mono-
chromatic wave height both in the shoaling and the breaking regions (Karambas and
Koutitas, 1992).

An cfticient method to solve the Boussinesq equations is to deal with the equations
in the [requency domain instcad of the time domain. The resulting one-dimensional
coupled mode equations considering only shoreward-propagating waves can predict the
cvolution of nearshore ficld wind waves (Freilich and Guza, 1984, Elgar and Gura,
1985), and the parabolic coupled mode equations can predict the transformation of
periodic long waves over two-dimensional topography (Liu et al.,, 1985). An angular
spectrum model of the Boussinesq equations can predict Mach reflection of cnoidal
waves well (Kirby, 1990). The KdV equation is consistent with the Boussinesq
cquations when considering only shoreward-propagating waves.  Although the
Boussinesq equations and the KdV equation have only the lowest order of nonlincarity,
the frequency-domain cquations can cstimate shoaled wave heights as well as wave

1 Research Assoc., Department of Civil Engrg., Kyoto Umversity, Kyoto, 6006, Japan
2 Assoc. Prof, Department of Civil Engrg., Univ. of Delaware, Newark, DI2 19716, USA.

474



RANDOM WAVE TRANSFORMATION 475

profiles fairly close to the breaking point (Vengayil and Kirby, 1936)  Extension of the
Boussinesq cquations and the KdV equation to improve thetr dispersion characteristios
was studied by Madsen, Murray and Sdrensen (1991) and Khangaonkar «und
LeMchaute (1991)

This paper develops a hybrid model for random wave transformation by employing
a modifted frequency-domain KdV cquation and a probabilistic bore-type wave
breaking model. The original trequency-domain (spectral) KdV equation is modified to
reproduce the shoaling and the dispersion relation for lincar component waves exactly
In order (o include encrgy dissipation due (o wave breaking, a damping term 1s
introduced into the modified spectral KdV cquation A form for the coeflicient of the
damping term is first deduced by inspection of measured spectral energy densities
together with calculated densities by the modificd spectral KAV equation, and the
coefficient is then formulated by using a probabilistic model o cypected cnergy
dissipation rate based on the bore model of Thornton and Guza (1982 taking mto
account the experimental characteristics.

The model equation developed here can be called a hybrid model, since 1t employs o
spectral method and a probabilistic method (individual wave analy~is method.
Comparisons between experimental observations and numerical predictons by the
hybrid model are carried out against cnergy spectra, representative wian ¢ herghis . perrods,
and crest heights.

MODEL EQUATION

Assuming a vertically two-dimensional case, small water depth vanatuon such as
O ‘Vh /If)s O{u?), and considering only shoreward-propagating was es (neglecting
reflected waves), we reduce the Boussinesq cquations to the KdV equution {or v anable
depth as expressed by

B 3 7 d
Y gh ng c4 3\gh e Veh h-

C Clx + = 0 ar
4h 2h 7% 6 e

O(¢) O(u?)

S+ gh &+

where {15 the surface displacement, /i is the water depth, 1 is the time, and & 15 the
horizontal coordinate.  Substituting the Fourier serics representation of surface
displacement with complex amplitudes, A,,

A, ! n(, ky dx- o I)Jr ¢ e 2)

into Eq.(1) vields the lowest-order frequency-domain KdV cquation, equivalent to the
consistent shoaling model of Freilich and Guza (1984):

dA, Ny 1 . 3,32
=y XA indki R
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3ink n-1 N-n
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where dA,/dx~ O(¢) is assumed. The procedure followed in deriving the above
equation follows that of Freilich and Guza (1984). and Liu et al. (198S). The second
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terim on the left hand side of Eq.(3) represents shoaling by Green's law; that 1s, the
cquation for hincar waves

dA, Iy
= - A 4
dy 40" i

15 integrated to

Ay | o §1

- 5
A0y Loy | )

This can be compared to the component form of fully dispersive linear theory, which
gives

dA, _ (Cyy e A, 6)
dx 20,

The mtegrated form is then

Autr) _ f('g,,(x)\*l : .
Ay(0) \(‘(Q”(())‘ '

which corresponds to the lincar shoaling theory. The third term on the left hand side of
Eq.(3) represents the effect of dispersion.  For linear component waves in uniform
depth, Eq.(3) reduces to

didy 1 inkihiA, =0 . (8)
dv 6

The resultant surface displacement is described by

nky+ (l, rr‘kl’zh: X-nm 1} e 9)

« _ 1 L
C =, dye)

From Eq.(9) the phase speed 1s given by

. (&
Cp= I !

= . (10)
K1 (nky 6

where oy /ky =\ gh Eq.(10) is an approximation in shallow water of the dispersion
relation,
Cy “tanh k-
= U Knll. (1
\ gh \ kh
where &y is obtained from (na))? = gk, tanh kit When we adopt the equation given by
ket
) \ tanh kyh

dA,

de ink,

1 A, =0 (12)

instead of Eq.(8), we can provide the exact dispersion relation.

In summary a modified version of spectral KdV equation in order to provide exact
shoaling and dispersion relation of each frequency mode is obtained by changing the
shoaling and the dispersion terms:
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Cy .
dA, + ( ;:,,).rA” i ink,( kot ])A,, 4+ Jinky
dx zcgu \‘ tanh knh 8
n-1 N-n
X[I—Z] AIA"*’+2[ZI AIA/H[J:(); Il=l,2,~-,N . (|3)

When cnergy dissipation is taken into account, a damping term «,A, should be
added to the left hand side of Eq.(13), where «y, is a damping coefficient to be
determined theoretically or experimentally:

dA, | (Cg)y . ( T kel ) 3ink,
A ik | n -HA, +
dx 20, n -k \ tanh &,/ " 8h
n-t N-n
s [ZI A[A”-I“-Z/ [A/A,H, tapAp =00 =12 .. N (14)

Depending on whether (y I real, image, or complex, change of encrgy only, phase only,
or both energy and phase, respectively, can be introduced. Here we take «1, 10 be real.
In shallow water the model cquatton with damping term is transformed 1o

N P N N
2 1y 2 2 _
"Z:I )] o ”2:. HAd| +2nz:. A =0 (15)

by adding the two equations of Eq.(14) multiplied by A,* and the complex conjugate of
Eq.(14) multiplicd by A, By using the relation of

N
E:é Ne Z LA,,F , (16)

n=1

Eq.(15) is rewritten as in a form of an energy flux equation:

N
(Ii‘\/gh)_t =-pgigh Z ay AL (17)

n=|

It 1s confirmed from Eq.(17) that the «, is a kind of energy damping coefficient.

EXPERIMENT ON RANDOM WAVE TRANSFORMATION

Random waves used here were stimulated to have the Pierson-Moskowitz, spectrum
with f, = 0.6 Hz and f,= 1.0 Hz (/p: the peak frequency), referred as Case 1 and Case 2,
respectively. Dominated wave breaking type seen in Case | was plunging, while in

Case 2 spilling breakers were dominated. Figure 1 shows a sketch of experimental
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Fig. 1 Experimental Sctup.

Figure 2 shows the change of measured energy spectra of Case | and Case 2. The
data of water surface variations at cach wave gauge were split into len segments of 1024
points with the tme interval of 0.1 sec. The cnergy spectrum of cach segment was
summed up and averaged. The cnsemble averaged spectrum was smoothed by
averaging threc points. The degree of freedom is 60, and the resolution frequency is
0.03 Hz. The figures show the decay of energies around the initially peak frequency,
the shift of peak frequency to the lower frequency, and the increase of energics in lower
and higher frequency regions with decrease in the water depth. At the shallowest water
of 2.5 ¢m (WG 12), the energy level of low frequency modes becomes almost the same
as that around the ininially peak frequency.

Case 1 Case 2

S (cm®sec)

10 15 20 25
f (Hz) f (Hz)
(a) (b)

Fig. 2 Change ol Mcasured Encrgy Spectra.

The calculated spectral energy densities by the original spectral KdV cquation
(Eq.(4)), the modified spectral KAV model without damping term (Eq.(14)), and the
lincar shoaling theory were compared with the measured energy densitics, as shown in
Fig.3. The 300 complex Fourier amplitudes at WG.1 (h =47 ¢cm) were used as input
dala. The energy spectra were calculated for ten segments and were averaged as in the
casc of experimental data. The orginal KdV model overestimates the cnergy densitics
at WG.7 where wave breaking is very infrequent. The prediction by the modified KdV
model agrees well with the observation at WG.7, but does not at WG 10 where cnergy
dissipation due to wave breaking is important.  The result means that since the Green’s
law is applicd to all spectral components by the original KdV model, the overestimation
oceurs, and that the modified KdV model provides a better prediction outside the surf
sone, but results in overestimation in the surf zone, duc to the lack of a wave damping
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term. The predictions by the lincar shoaling theory differ from the obscrvations in
spectral shape.
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Fig. 3 Comparison between Calculated Results by the Frequency-Domain
KdV Model, Modified KdV Model and Lincar Shoalimg Theory

DAMPING COEFFICIENT

For constant water depth, the following equation for spectral densities ts obtained
from Eq.(15) muluplied by NAK2.

N
> S+ 2w S, =0 (18)

n=l
When ;15 nearly constant {or short distance, the solution of Eq.(18) is

S(Ax) = §,(0) ¢ 2 A (19)
and «g; 15 expressed by

ap = - I ]S, (Ax) 8, (0) 7 (2Ax) (20
The Taytor expansion of the aborve cquation 1s

ay = 108, 0An) S0 (2ay) (21

However, «, cstimated by Eq.(20) or Eq.(21), using the measured spectral energy
densities, contains the eftects of shoaling and nonlincar wan ¢ interaction. Some revision
to remove such effects i1s required. Here the numertcal results are utilized. Since the
difference between the caleulated spectral density at Av dow nstream. 8, (Ax) ¢, and the
measured density at a reference point, §,{0)jeue, may be considered as the effects of
shoaling and nonlinear nteraction, the measured spectral density at Av downstream,
Sa(Ax) \feas 18 modilied as

\,,(A‘) = S,,(A.\') Meas - {.\'”(A.\')( al. ” Su(“) Moeas } 23

Since §,(Ar) takes negative value sometimes and the form of Eq.(20) s mconscinent,
Eq.(21) 1s used as
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t, = 1- {S;,(Ar)/.S',,(())M(,M} /2Ax) .

Another way is 10 obtain the «, so as to coincide SalAv) cap with §,(Ax)

described by the following equation:
1, =-1In I’S,,(A.r)\1tgas_/AS',,(A.r)('a| : / (ZA.\”) .
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Fig 4 Estumated Damping Coefficient
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Figure 4 shows the estimated «, using the dala of consecutive wave gauges of
WG9 and WG.10, WG 10 and WG 11, WG. 11 and WG.12, separated by 50 ¢cm cach
other, in which the solid line is the result using Eq.(23) and the dotted fine is by
Eq.(24). The solid line and the dotted line are almost the same in a region of f< 2.0 Hy.
The «y at a given frequency becomes targe with decrease in the water depth and appears
to be proportional 1o f 2 with a small constant value. The tendency is similar to that of
the viscous damping term of the Burgers equation (given by -v{ where v is the
positive coetficient). The Fourier representation for -vGyy , using Eq.(2), results in
vink|)2A,, which is rewritten as v(nmy2(gh)A, using the relation of (nky)2=
(nw)2/(gh); that is, (p=my~/(gh). Because of the denominator gh, the «;, becomes
large with decrease in the water depth, and is proportional to the frequency squared.
These results are used below 1o guide the choice of the distribution of damping on a
frequency-by-frequency basis.

Thornton and Guza (1983) formulated the expected value of energy dissipation rate,
€., based on the probabilistic method (or individual wave analysis method), by using
the Rayleigh distribution for wave height distribution, the specific weight function to
represent the wave height distribution of broken waves, and an cnergy dissipation model

of bore for each broken wave. The encrgy flux equation in shallow water is described
by

(Ergh) =- e . (25)
- - I . (26)

Hypd
243 | 52
VL + (Hmdvin= |

ST o B3
o = q pe B

where B is a breaking coefficient, f is the characteristic frequency, Hipy 18 the rm.s.
wave height, y is the parameter Lo relate the Hppe with the water depth. Here we choose
the parameter values to be

B=1,y=06, [=f, Hp=2 ./ > A (27)

n

The right hand sides of Eqs.(17) and (25) should be cqual to cach other:

5
2 VY ar )

hv 8 (
Z A= BT gyl T
n=1

163 gh vt
- ! o N .
x e SVl =P Y af (28)
vy at
g J

Following Kirby et al. (1992), «, was determined to represent the cxperimental
tendency as fotlows:

an = ag+ { fy /_f)2 a (29)

e z A,

a =B, ay= (- ap) —2 (30)

2 i f '
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Fig. 5 Comparison between Measured Spectra and
Calculated Ones by Hybrid Model Equation.
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The lirst constant term of Eq.(29) represents uniform energy decay over ail frequency
components, and the second term is to express the /2 dependence. Here we chose as
F =05 Eq.(14) using «, determined by Eqgs.(29) and (30) is the hybrid meodel
equation used hereafter. The resulting model is itegrated shoreward from the inttial
gauge position without any subsequent reference 10 use of measured data.

COMPARISON BETWEEN EXPERIMENTAL OBSERVATIONS
AND HYBRID MODEL PREDICTIONS

Figure 5 shows the comparisons of the measured spectra with the calculated ones by
the hybrid model cquation. Input data was given at WG.1 (k=47 cm). For Case 1,
although there are slight differences in the region of f> 1.0 Hzat WG.11 and /< 1.0 Hz
at WG. 12, both results agree fairly well. The measured and calculated spectra of Case 2
also show good agreement.  Predictions estimate the increase of energies in high and
low frequency regions.
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0 10 20 30 40
Depth (cm)
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15 4 Case 2 h_/lce:S (ie_ll H
o e,
—o— A
- -

Wave Height (cm)

Fig. 6 Comparison between Measured and Calculate Representative Wave Heights.
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Using the inverse FFT on the calculated Ap, We can obtamn water surface variations
from which wave characteristics such as wave heights, periods, crest heights, and so on,
can be calculated. In the following comparisons, measured wave characleristics were
calculated from the consecutive low-pass filtered (4.0 Hz) water surface variations with
Ar=0.025sec. Figure 6 shows the comparisons of the measured representative wave
heights with the calculated ones for Case 1 and Case 2. It can be scen from the figures
that the agrecment between measured and calculated wave heights is good.

Wave Period (sec)

Depth (cm)
(a)
o
Q
L
o
Q
@
a
o]
>
U
=
0.5 T T T T
0 10 20 30 40
Depth (cm)
(b)

Fig. 7 Comparison between Measured and Calculated
Representative Wave Periods.

Figure 7 shows the change of representative wave periods.  Existing models based
on the individual wave analysis model assume that the waye period 1s constant, or cannot
deal with the change of wave period. Increase of energies of low frequency modes and
decrease of energics around the initially peak frequency, according o Fig.2, make the
zero-upcrossing periods long compared to the incident wave periods.  The present
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hybrid model can estimate such change of wave periods, although a little differences can
be scen at the shallowest water.

The wave crest height is an important factor for the design of the height of scawalls,
platforms, and so on. Figure 8 shows the comparisons between the measurcd
representative crest heights and the calculated ones. Although the predictions are a little
smaller than the observations, satisfactorily good agreement is obtained. The
representative normalized crest heights (each crest height was normalized by the wave
height) are shown in Fig.9, which shows a little different tendency of change between
the observations and the predictions. The values themselves agree fairly well.
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§ol gh¥ev o
g 4 A o i ol [ SAN a0 SEELSREEY JREEEEn .
6 /i'_ﬁ_ ‘ﬁ“—-—— ................
T
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(b)

Fig. 8 Comparison between Measured and Caleulated
Representative Wave Crest Heights.
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Fig 9 Representativ ¢ Normalized Wave Crest Heights.

CONCLUSIONS

This paper proposed a hybrid model for random wave transformation, and compared
the numertcal predictions with the cxperimental observations. In the hybrid model a
spectral model and a probabilistic mode] were cemployed: the former is the modified
frequency -domain (spectral) KdV model to provide the shoaling and the dispersion
relation for lincar component waves with a damping term; the latter is a probabilistic
model of energy dissipation duc to wave breaking to formulate the cocflicient of the
damping term in the modified spectral KAV model

The numerical predictions of cnergy spectra agreed well the experimental
observations concerning the decay of cnergies around the initially peak frequency, the
shift of peak frequency to the lower frequency, and the increase of cnergices in lower and
higher frequency regions with decrease in the water depth. In addition to the cnergy
spectra,  the agreement between the predictions and the observation was satisfactorily
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good against the representative wave heights, wave pertods, wave crest heights. Thus, it
was confirmed that the hybrid model developed here was useful as a vertically two-
dimensional random waves over a uniform slope. The hybrid model should be further
cxamined on the applicability to other situations such as multiple peak waves over a bar
type topography.
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