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Abstract

The propagation of linear water waves over a three-dimensional ocean is mod-
elled using the mild-slope equation. Various parabolic wave models are de-
scribed that approximate the governing elliptic partial differential equation,
and so are very convenient for computing wave propagation over large dis-
tances. Several aspects are discussed: computation of the reflected wavefield,
the construction of good lateral boundary conditions (also known as ‘non-
reflecting boundary conditions’), the modelling of porous regions, and the ap-
plication of conformal mapping to simplify the geometry of the computational
domain. Parallel work using the Boussinesq equations for weakly nonlinear,
weakly dispersive long waves is then reviewed.

1 Introduction
The propagation of water waves over a three-dimensional ocean is gov-

erned by Laplace’s equation, which is an elliptic partial differential equa-
tion, in a variable domain. As the numerical solution of such equations
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over large areas is computationally intensive, parabolic approximation

have been developed: they reduce the number of spatial dimensions to
two and also remove some of the boundary condition requirements. These

approximations are the subject of this paper.

Parabolic approximations are appropriate when the waves propagate

mainly in one direction, taken to be the z-direction, and lead to parabolic

partial differential equations; these can be solved numerically by march-

ing in z.

Parabolic approximations were first used by Leontovich and Fock in 3
the 1940’s to obtain analytical approximations for certain high-frequency
diffraction problems. See Nussenzveig (1, §7.3] for a recent discussion.

Tappert [2, Appendix A] gives a brief historical survey.

Nowadays, the main virtue of parabolic approximations is the ease
with which such partial differential equations can be solved numerically.:
This virtue was recognised first in seismology; see Claerbout’s book [3].
However, it is in the field of underwater acoustics that most developments
have occurred. Here, the basic problem is to calculate the propagation’
of sound waves over vast distances through a compressible ocean. For
reviews, see Tappert [2] or Ames & Lee [4] as well as the text by Jensen et

al. [5]. For parabolic approximations in elastodynamics, see McCoy [6, 7]

Parabolic approximations were first used in the context of three-
dimensional water waves by Liu & Mei [8] and Radder 9]. Mei &
Tuck [10] developed a linear parabolic model of waves propagating past -

slender bodies. Kirby & Dalrymple [11] and Liu & Tsay [12] showed
how weak nonlinear effects (corresponding to intermediate depth, dis-
persive Stokes waves) can be included. The effects of current and vari-

able bathymetry were explored by Booij [13], Liu [14], and Kirby [15].

Stochastic variations in the ocean depth were considered by Reeve [16].

Other developments are described in [17] and [18], and in other papers
cited below.

In this paper, we start from the mild-slope equation, recast as a

Helmholtz equation with a spatially-varying wavenumber. We then de~
scribe various methods for deriving parabolic approximations to this

equation. Three further topics are discussed, driven mainly by compu-

tational considerations. First, it is most convenient to solve the chosen
parabolic equation on a rectangular grid in the (z,y)-plane, marching

in z. This leads to a study of appropriate lateral boundary conditions
(on lines y = constant). We describe a ‘perfect boundary condition’ that
1s transparent to any waves leaving the computational domain. (This
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is a non-standard example of so-called ‘non-reﬂecti'ng boundary condi-
tions’.) Second, we consider the effect of porous regions (SUC}'I as r}lbble
breakwaters) adjacent to the water; a perfec.t boundary c'ond.ltlon is de-
veloped for such situations. Third, we consider the.apphca‘mon of con-
formal mappings, so as to map complicated geometries onto rectangular

computational domains. . .

When waves propagate into shallow water, dispersive effec.ts become
small and the separate frequency components of a wave tra?n beco.me
coupled through weakly detuned three-wave interactmng This phy?,lcal
system is usually modelled at present using the Boussinesq eq'uatlons,
and a development of parabolic approximations to.these equatlor.ls hjas
proceeded that mirrors the development for the mlld-slope eq.uatlon in
many ways. We conclude by reviewing the developments in this area.

2 Governing equations

Choose Cartesian coordinates Ozyz, so that z = 0 is the 1.1ndisturbed
free surface, with the z-axis pointing upwards. The bottom is at

z = —h(l'ay) = _h(m)v

where we use & = (z,y) for the horizontal coordinates. We assume
that the water is incompressible and inviscid, and that the motion is
irrotational; thus, a velocity potential

®(z,y,2,1) = Re {(z,y,2) e}

exists, where w is the circular frequency. The potential ¢ satisfies

82 82 82
— e — =
(o 3¢

in the water and 96
‘a—TL‘ =
where 0/0n denotes normal differentiation. .
At the free surface, z = n(z,y,t), there are two nonlinear boundary
conditions [19],

0 on z = —h(x),

oy 0% 0®dy 9% _
_87_5;+83:8:c+0y8y
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and
n -+ o2 +
ot
where g is the acceleration due to gravity, A scaling argument allows
linearization based on the wave steepness, ka, where k is a wavenumber
and a is a characteristic amplitude. Thus the linear velocity potential |
satisfles the linearized condition .

w'¢ =

lgrad ®° =

a

The surface elevation is given by

on z=0.

18<I>

—-lwt} —_ =

n(z,t) = Re {((x)

on z = (, whence

2.1 Constant depth

If the water has constant depth h, we can separate out the dependence -
on z. Thus, we can write the linear potential as k

B l_q cosh k(h + z)
W ) o @

The two-dimensional complex-valued function ( satisfies the Helmholtz
equation

$(z,y,2) =

(V24 k) =0, 3

where
0? ?
2 = e— r—
V= Oz? + Oy?

is the two-dimensional Laplacian in the horizontal plane. Given w, the
wavenumber k is defined to be the unique positive real root of

w® = gktanh kh; (4)

this dispersion relation ensures that the free-surface condition (1) and
the rigid-bottom condition,

_—= on z = —h,
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are both satisfied.
A typical wave-like solution of (3) is

((2) = eitetm),

where £ = kcos and m = ksinf. This corresponds to a plane wave of
unit amplitude propagating at an angle 0 to the z-axis. The phase speed

_vY_ /s
c= - ktanh kh, (5)

whereas the group velocity is

dw 2kh
cg_E—lgwic{1+sinh2kh}' (6)

2.2 Variable depth: the mild-slope equation

18

If the depth h varies with @, it is not possible, in general, to reduce the
three-dimensional Laplace equation to a two-dimensional partial differen-
tial equation in the horizontal plane. However, an approximate reduction
can be made, resulting in

L)L () rexs

Here, the local wavenumber k() is determined from the dispersion rela-
tion (4), using the water depth at @, and then p(x) is defined by

p(@) = (@) cg(2),

using (5) and (6).

Equation (7) is called the mild-slope equation. It was derived by
Berkhoff [20], using regular perturbation expansions and an integration
over the water depth; see also [21] and [19, §3.5]. It has the same form as
the equation governing the acoustic pressure (() in a compressible fluid
with variable density (1/p).

The mild-slope equation is exact for deep water and for water of
constant finite depth (when it reduces to (3)). For shallow water (kh —
0), it reduces to the shallow-water equation (formally, replace p(z) by
h(x) in (7)). Finally, it is known that the mild-slope equation is valid
for intermediate depths, provided h(x) does not change too rapidly over
a wavelength [22].




174  Gravity Waves in Water of Finite Depth

For information on the numerical treatment of the mild-slope equa-
tion, see Berkhoff et al. [23], Ebersole [24], Li & Anastasiou [25], Martin
& Dalrymple [26] and other papers in this book.

Make the standard substitution [27]

= Vp(z)((z)
(V2+ K*)y =0,

Vivp ®)
7

Thus, we see that the mild-slope equation can be written as a two-
dimensional Helmholtz equation with a spatially-varying wavenumber,
K (x). This reduction was used by Radder [9].

Various modifications of the mild-slope equation have been proposed.
Thus, Kirby [28] derived a modified equation for rippled beds, using
Green’s Identity. Massel [29] developed an equation for a rapidly varying
bathymetry, using an eigenfunction expansion including the evanescent
modes. His equation reduces to Berkhoff’s for mild slopes.

Bottom friction, seaweed, wave breaking, porous bottoms and mud
bottoms can all contribute to a damping of wave energy. Dalrymple et
al. [30], following Booij [13], show how to incorporate these effects via
a complex dissipation function w which modifies the mild-slope equa-
tion (7) by adding a term

in (7); the result is

where
K=k -

—lww(
to the left-hand side; equivalently, add the term
ikw

Cg

to the right-hand side of (8). The wave-breaking model of Dally et al. [31]
was incorporated by Kirby & Dalrymple [32].

3 Parabolic models for the Laplace and
Heimholtz equations

We have seen that our water-wave problem can be reduced to the Helmholt
equation, which we rewrite here as

Vi + [k(z)]*p = 0. (9)
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Where appropriate, we use ko to denote a constant wavenumber, giving
V3 + k3 = 0. (10)

In this section, we shall give several derivations of several parabolic ap-
proximations to the Helmholtz equation.

3.1 Heuristic derivations

Look for a solution of (9) in the form

() = uf@) ™, (11)

where the constant ky may be thought of as an average of k(x). The
equation for u is found to be
82u 0%u ou

+ 21]60

37 a > Ep + (k* — k2)u = 0.

Next, we discard the term 8%u/dz?. This may be justified by supposing
that u(z,y) is a slowly-varying function of z, whence

‘a—u’ & |koul. (12)
Oz

Physically, this is reasonable if most of the variation of 4 with z is given
by the exponential in (11). The resulting equation is

du i 5%u
or, reverting to v (using u = tp e~k
19, i H2
af 2;0 {(k2 + k3 + d)}. (14)

In particular, if k is constant, k = ko, equations (13) and (14) reduce
to

du 32
4+ =09 15
and ” ' 82¢
i
P ko) + —— g Oy (16)
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respectively. We call these the simple parabolic equations.
More generally, we can consider the WKB-type representation,

(@) = u(z) exp {1/ ki (2') dw’} ,

equation for u is found to be

k
2iklg?i + 1%lu + (B — k)u+ — =0, (17)

after discarding the term 9%u/0z®. This equation reduces to (13) when
kl(.'E) = k().

3.2 Wave splitting

The presentation here is based mainly on McDaniel’s papers [33, 34]. We
start by writing the Helmholtz equation (9) as a first-order system,

(oo )= (50 ) (ole). 8

where P? is an operator, defined by

82
=k? 1 —
PPk g

Next, we aim to split ¢ into the sum of two functions, corresponding
to waves travelling in opposite directions; we are interested in those waves
travelling in the direction of z increasing. So, we introduce the 2 x 2

splitting matriz T
_(a B
'= < v 8 ) ’
and then define the forward (1) and backward (1)) fields by

(zf):%@ﬁax)

The matrix T' can be chosen in many ways. We want to have the
decomposition

Yp=y9T 49y,
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and this implies that

a+y=1 and 8+46=0.

In addition, for T to be invertible, we require that § # 0.
Combining equations (18) and (19), we obtain

(3) [ (S )l ()

Written explicitly, this pair of equations becomes

oy*

= Ayt ATy, (20)
oz
aaix = B+¢++B*¢“ (21)
Ju )]
A+ - 5“_,@7)2 (a )a
- _ 0o gy af0B )
A™ = e 8P 3 +a

Bt = ——8—%+ﬂ7>2—1_ (a—ﬂ—(l—a)),

B~ = ——;+ﬂ7>2+—(a—+(1—a))-

So far, we have not made any approximations. We now do two things:
we make a choice for T' and we discard the reflected wave ¢~ and the
term A=t~ from (20). Different choices of T lead to different parabolic
approximations.

When k = ko, a constant, we would like the equations for ¢+ and 9~
to decouple. In particular, we should admit the plane-wave solutions,

/(/)— — e—ik‘ox

We can arrange for this by choosing (a/8)? + k* = 0, which leads to two
choices for the splitting matrix, namely

(1 —ifke (1 =ik

¢+ = ¢lfo® and
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If we use Tp (so that a = % and 8 = —%i/ko), we find that

i 0

A= 3k oy

so that the equations for 1)+ and ¢~ do not decouple. Nevertheless, if

we discard the term involving A~, we see that (20) reduces to (14).
Similarly, if we use T} (so that o = § and § = —1i/k), we find that

_ 1 ok ?
A (ax“‘ @)

Again, discarding the term involving A~, we see that (20) reduces to

Oz 0 Oy?

This equation was obtained by Corones [35]. It is the equation studie

by Radder [9] for the propagation of water waves. If we rewrite (22)

using (11), we obtain

0 ok o?
21k;,)—1£+2k(k—k0)u+1ua 31::0

as the equation governing the amplitude u(x).
A third choice for 1" is

1 —ip-!
T3=%(1 ip-! )

A = ;P-I%P.

whence

This choice has the virtue that the equations for ¢* and %~ decouple

when k is independent of z. Discarding A~, we obtain

o

an equation due to Claerbout [36]. Indeed, this equation follows from a
simple factorization of the Helmholtz equation,

., (8 N[O
oot P = <£+1P><aw m)

Y ok &
= 2k(2k2+—+—)¢ (22)

L =ipy, (24)

Gravity Waves in Water of Finite Depth 179

assuming that k does not vary with z [7].
In order to use an equation such as (24), we must be able to compute
the square-root operator P, defined formally by

92
P=/k*+ —8‘—2
It is known that P is a non-local operator, which means that it cannot
be written as a differential operator, even if k is constant. In fact, P
is a pseudodifferential operator. However, P can be approximated us-
ing differential operators. This can be seen most clearly using Fourier
analysis when k is constant. We sketch this approach below; McCoy [7]
discusses the case where k is independent of z. However, formal approx-
imations of P are often made. For example, Tappert [2, p. 276] derives
the equation

o 1910y i 0 (1 0k

9z 2 0y (k 8y>+ AT (k6y>¢’
which Ames & Lee [4] call the range refraction parabolic wave equation;
see also [37].

3.3 Computation of the reflected wave

The splitting method described in the previous section does not auto-
matically eliminate consideration of a reflected wave component +~; in
fact, we saw that the decoupling of the equations is usually imperfect and
is achieved only as an assumption about the relatively weak effect of a
reflected wave on the forward propagating component. There have been
a few instances in the literature where a computation of the reflected
wave is also made based on the complete system (20) and (21). For the
mildly-sloped bottoms considered here, reflection is usually weak unless
some undular feature of the bed causes a resonance between incident and
reflected wave components.

Corones [35] extended the methods of Bremmer [38] and Bellman
& Kalaba [39] to the coupled system (20) and (21). First, rewrite the
system using parabolic differential operators P*(z) given by

0

PHa) = 5 - At(a)
Pe) = 5B (@)
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to obtain ‘ ‘

Pryt = A"y~ and Py = Byt (25)
If we then let G*(z|a') denote the Green’s function of the parabolicl
differential operators P*, we may write the solution to (25) as .

¥ (@)
V(=) =

5@+ [ 6 (el A @) v () e
b5 (@) + [ (el BY&) v (=) o,

where 1,[)(:,t are the decoupled, forward and backward-scattered solutions
to the parabolic equations
PEg5 =0, (26)
and where suitable boundary conditions have to to prescribed to initialize
the forward and backward propagating waves at the beginning and end
of the domain. Iteration of these integral equations yields the Bremmer
series.
One question of concern in the Bremmer series representation is the
convergence of the resulting series itself. Atkinson [40] showed that the
convergence of the series is strictly limited by the smallness of the ab-
solute integral of the reflection operators (A~, B*) over the range of
the depth inhomogeneity. There is not enough evidence in the literas
ture to deduce whether this convergence limit is a practical hindrance
in situations where bottoms take on naturally mild configurations. Most
applications of the ideas here have used an iterative approach in order
to obtain computational results; see, for example, Liu & Tsay [41]. To
illustrate such a method, consider the system (25). First, compute an
initial condition for the iteration using (26). Then, a sequence of iterates
1&?;) is constructed using the formulae

Pyt = A7y and  Pyny =Byl ).
(n) (n-1) (n) (n—1)

For situations where only weak reflections arise, the iteration proceeds
to rapid convergence in as few as two steps [41]. However, in a study
of resonant reflection from undular bed forms, Kirby [28] found that the
iteration process suggested here also diverges if the initial estimate of the
reflected wave is too large, and found it necessary to modify the present
technique using an under-relaxation scheme.
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3.4 Fourier analysis

When k = ko, we can use Fourier analysis to represent solutions of (10)
in terms of plane waves:

1 < i(lm+my)
= — £,m)e dé dm.
b(2,9) s /;oo/_oo ptm)

Gubstituting into (10) shows that the only allowable values of £ and m

are those satisfying

(27)

a(f,m) = k-0 —m? =0,

that is

{ = kocos and m = kosin 8, —r<b<m,

corresponding to plane waves propagating in all directions 8; equation (27)
is the equation of a circle in the (£, m)-plane. . .

The function a{f,m) is called the symbol of the differential opera-
tor V2 + k2. Elementary properties of the Fourier transform show that
differential operators have polynomial symbols. o '

Now, we want an equation governing propagation in 't}.le for.ward di-
rection, that is, —%w << %7‘(. Thus, we want the semicircle in £ > 0,

0= +r/k2 —m?

This does not correspond to a differential operator. rever :
approximate the square-root in various ways, so as to obtain differential

namely,
(28)

However, we can

equations. ' . N
For good accuracy close to the z-axis, we can assume that m is small;

this gives the approximation
0= ko{1 — 5(m/ko)"},

a parabola in the (¢, m)-plane. It corresponds to the simple parabolic
approximation (16). '

Another possibility is to approximate the square-root by a rational
function; following Kirby [42], write

2
2 2~ ao + a1(m/ko) ‘
VRS = = o o

(29)
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p p €rs ()f m and HlatCh le
Il we ex a]ld bOt]l Sldes m oW TIms up l]O m 5 W

ag =1, a = -—4§ and b = ——‘11—. (30
Alternatively, we can determine the coefficients ag, a1 and by by matchin
both sides of (29) in an average (minimax) sense over a specified ran
of m. Such approximations are discussed in [42] and [43]. These papegr
also consider higher-order approximations; for some comparisons wit
shallow-water theory applied to a simple step, see [44].

' Let' us take. a = 1, so that a plane wave can propagate along the z
axis without distortion. Then, equations (28) and (29) give the relatio

i{1 + by(m/ko)?} = iko{1 + az(m/ko)?}

in Fourier space. In physical space, this corresponds to

oY b 0% ) ia; 0%

'-——2——211(]0'1/)—_—.

Or k2 Ox Oy? ko Oy?
Making the substitution (11) gives

.. Ou u 2y B

2iky == + 200 o 4 =t U _
0 T dy? + ko Oz 0y? 0, (31

where g = b; — a; and @; = —b, are constants at our disposal; w

assurne that they are non-negative. We call (31) the wide-angle paraboli
equation. It reduces to the simple parabolic equation (15) when ag = 1
and a; = 0. When the choices (30) are made, it becomes ’
2 : 3
ik oty TU 1 Tu_,
Oz = 0y?  2ky Oz dy?

which is known as Claerbout’s equation [3, pp. 206-207].

parabolic equation

In the r.emainder of this paper, we shall concentrate mainly on the simple
parak.)ohc equation, (15). We start by describing the basic discretization
of this equation using the Crank-Nicolson scheme. We consider a (semi-
infinite) rectangular computational domain

Co={(z,y):2>0,0<y<b}.

T
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An ‘initial condition’ is prescribed on the end 2 =10,0 <y < b. Lateral
poundary conditions are prescribed on the two sides, y = 0 and y = b,
for > 0. These conditions will be discussed in detail later. As the
governing partial differential equation is parabolic, it is not necessary to
specify a ‘downwave condition’ at large values of z.

We superimpose a regular mesh on the computational domain Gy, with
grid points at (z;,yn), where z; = JAT, y, = (n—1)Ay,j=0,1,2,....J
and n =0,1,2,..., N. By construction, b= (N — 1)Ay. Denote

ul, = u(z;, Yn)-

The Crank-Nicolson approach, which is an implicit scheme with second-
order accuracy in both Az and Ay, is written as

i i 90 4y =1 g1 4 g0t
u n 1 {unH Z’U:H + Upq Up 41 2un + Un_y —
2

%iky 2 +

This scheme is consistent and stable. It is also convenient in that it
uses only the results from row j — 1 to compute row j, resulting in a
tridiagonal matrix when applied to all of the n values excluding those
on the boundary. Boundary conditions have to be applied at n = 0
and n = N to provide enough equations to solve for the unknowns, ul,
n = 0,1,2,...,N. Once these conditions are included, the resulting
equations may be solved using a (complex) tridiagonal solver; these are
very fast. An analysis of the numerical scheme (in fact, for the wide-angle
parabolic equation (31) in the context of underwater acoustics) has been
given by St. Mary & Lee [45].

5 Lateral boundary conditions: overview

Typical numerical implementations of parabolic models use very simple
lateral boundary conditions, such as impedance conditions. These lateral
boundary conditions are imperfect, in that they reflect waves back into
the computational domain. Hence, a very wide domain must be used so
that the influence of the lateral boundary conditions is far away from the
region of interest, so as to not introduce any numerical contamination.
This of course means that far more numerical computation is carried out
than is desired. Efficient lateral boundary conditions would mean that
model computations would only include the region of interest.
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In the context of water waves, two problems are of interest. Thes showing that the 1rnped.ance of t}.w b'ound?lr J d?ﬁﬁgﬁi&%gﬁi;ﬁig‘lf
are the diffraction and transmission problems. More precisely, divid incidence' z?nd the reﬂe.CtIOIl coefg(:lent, usuatly, nel
the first quadrant (z > 0, y > 0) into an ‘illuminated region’ (z > Rewriting (33), using (2) an
0 <y < b) and a ‘shadow region’ (z > 0, y > b). {(z) = u(x) ko

For a diffraction problem, suppose that there is a semi-infinite break .
water along z = 0, y > b (where u vanishes) and waves are incident fro we have the impedance boundary condition
the region z < 0. In standard implementations, computations would in Su
clude both the the illuminated region and (part of) the shadow region
If only the illuminated region is of interest, we could reduce the compti

ony =b. (35)

tational domain to that region by placing a suitable diffractive boundar In general, Z could be real or complex. A real value of the. 1mpf3dance Vflu
condition along the interface between the two regions, namely z > 0 Jead to transmission of waves and wave energy. A purely imaginary va u/i
y = b; see §7.1. will result in a phase shift of the reflected wave, bu't no transmission.
For a transmission problem, we allow waves to pass cleanly throug complex Z results in both transmission an(‘i reflection. . 0
the line z = 0, y > b (along which u does not vanish, in general). T For example, for plane waves with the impedance given as (34), the
order to reduce the computational domain to the illuminated region, w impedance boundary condition becomes
now place a suitable transmitting boundary condition alongz >0, y=15 ou . . . (1-R _ _ 5
see §7.2. 30" 1ko sin 6 i+ R)“ =0 ony=0
Let us now describe some of the lateral boundary conditions usuall y )
employed in the literature. First, we note that one solution of (15) is For a perfectly reflecting boundary, R is set to unity. For a perfectly

transmitting boundary condition, R 1s set to zero, yielding

. . _ M ikousind=0 ony=b. (36)
corresponding to a plane wave propagating at an angle 8 to the z-axis ay
For the case of reflection from a lateral boundary at y = b, we can writ

the total solution as

-1

. Caa T
u(x,y) = e sikoz sin 9elk0(y b)smﬁ,

In addition to planar wave trains at the boundary, this boundary con-
dition requires that both ko and the wave angle, 6, be known at the

u(z,y) = o~ 3ikowsin? 0 (eiko(y—b) sind | p o=iko(y=t) sine) ’ (32 boundary. These parameters can be 'difﬁ.cul'c to obtain within a compu-
tational model (especially if h{x) varies in Cy). .
where R is the (complex) reflection coefficient; | R| can vary between zer Kirby [46] has used a numerical implementation of (36), for waves
and unity depending on the amount of reflection from the boundary. propagating over a variable-depth domain. He assumes that the l.ong-
Now, the most common lateral boundary condition used with paraboli shore wavenumber, ko sin 6, is calculable from the previous computational
models is an impedance boundary condition. The impedance, Z, in our grid row. In finite-difference form, the boundary condition becomes
context, is defined as the ratio of pressure at the boundary to norma . , ; i
velocity at the boundary, Uny1 ~ Uh — ikgsin (%ﬂ—zi—u—"> =0, (37)
_ pO®/ot  iwpé By

- —02/9y  94/dy ny="h (33) for n =0 or n = N — 1, when the boundary is located at y= 0 or-g = b,
‘ 1vely. in @ is found by evaluating (37) at the previous grid row:
where p is the density. For our plane-wave solution with reflection, (32), ‘; respectively. kosinf is found by

we have % <u3;11 _ szl) (39)
pw (1 + R) - Ay (ui;_ll + uzl_1>.

— koSil’laz
 kosind (1 —R)

(34)
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Kirby [46] has shown that this condition, (37) with (38), is exact for plan
waves. It may be used on the upwave or downwave lateral boundary,
but should be far from scattering objects within the model domain, a;
scattering of waves occurring within the computational domain will b
partially reflected by this ‘plane-wave’ boundary condition. The intentio
of this practice is to have the weak reflection enter the computationa
domain downwave of the area of interest.

For an arbitrary impedance, Dalrymple [47] examined the decay o
waves in a entrance channel with rubblemound jetties. The wave height
due to the diffraction of wave energy into the dissipating sidewalls of the
channel, was shown to decay exponentially down the channel.

- Other lateral boundary conditions have been used. For example,
‘sponge-layer’ models have been introduced, which involve regions of
high energy dissipation near the side walls of the computational do-
main (48], [49].

Dalrymple & Martin [50] have developed some generalized impedance
boundary conditions which permit waves to leave the computational do-
main regardless of the wave direction, crest curvature, or strength of
scattering. They are perfect boundary conditions, because they are ex-
act, apart from discretization errors. The idea is to solve the governing
differential equation in the ‘shadow region’ exactly, using integral trans-
forms. This leads to an exact condition which is to be imposed on the
lateral boundary. This idea was used by Marcus [51] to develop trans-
mitting boundary conditions for underwater acoustics; he used Fourier
transforms. We use Laplace transforms, as these are more convenient.
We obtain appropriate conditions for diffracting as well as transmitting
boundaries. Numerical comparisons with Kirby’s plane-wave boundary
condition have been made [50]; these show the efficacy of the new bound-
ary condition. The method can be extended so as to treat the wide-angle
equation (31).

Givoli [52] has reviewed the extensive literature on ‘non-reflecting
boundary conditions’, although he does not consider the specific prob-
lem of deriving good lateral boundary conditions for parabolic equations.
Our exact boundary conditions are non-local and similar to [52, equa-
tion (26)]; they become computationally useful after appropriate dis-
cretization.
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¢ Exact solution in the shadow region

", ole
1 dary conditions, we solve the simp
In order to derive perfect lateral boundary by o b

] i ithin the ‘shado
lic equation (15) exactly within tI .
arab:t 1to :ppropriate boundary conditions. Thus, we consider

subje
oy? Oz
subject to the boundary conditions
U(z,b) = w(z) forz>0 (40)
- U,y)=0  fory>b, (41)
where uy(z) is assumed known and
0?2 = 2ikg/; (42)
we also assume that
U(z,y) is bounded as y — oo. (43)
, 50, without

Clearly, the solution of this problem is a function of (y — b)

1 f generality, we can set b= 0. ' . _
OSSV(;/'egnote that, due to the assumption (12), (41) is a comparable ap

imation to d¢/0z = 0 on z = 0, which is itself the appropriate
roxima )
goundary condition on a rigid wall or 1mperm.eab1e breakwater.
We solve for U using a Laplace transform in z:

LU} =T(py) = / Ule,y)e ™ d, (44)

where we suppose that Rep > 0. Since

L {%%} = pU(p,y) — U(0,y) = pU(p,y),

by (41), (39) is transformed into
— 4+ apQ*U =0,
Oy? P
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with general solution

Ulp:y) = C(p) exp{iyQy/p} + D(p) exp{—iyf,/7F}.
Given (42), we define Q by

Q= (141i)y/(ko/).

Then, (43) implies that D(p) = 0, whence (40) gives C(p) = w(p
Hence,

Ulp,y) = @(p) exp{(~1 +i)y+/kop}. (4
This formula can be inverted using the convolution theorem, namely
ctwep) = £{ [ute - E(e) e}
0

From [53, §17.13, equation (32)], we have

exp{iyQy/7p) = L {— AL (”myz)} :

2x3/2 4z
Hence, the convolution theorem gives

2z~ ¢)

as required: an integration by part

U(z,y) = —%iyﬂ[)zﬁ%exp{%} d¢. (46)

This function is small for large y,
shows that, as y — oo,

2iz1/2 2

ikoy -3
e { b+om

Z

U(.’L‘,y) ~

If we differentiate (45) with respect to y, we obtain

?%Z,y-) =i0/mpU(p,y) = i0/(n/p) {pU(p, y)}. (47)

Using the convolution theorem again, we deduce that

0U(z,y) TOU(L,y)  de

—_—

3y A T (18)

in particular, on y = 0,

oU(z 7
Lgy’o) =in [ \_;(f)z de. (49)

This equation is the starting point for the derivation of the generalized

impedance boundary condition. Note that it is easier to derive (49)
by working in the transform dom
formula (46).

ain, rather than by manipulating the
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7 Perfect boundary conditions

We have just given an exact description' of the waves in1 ttl.e sllla,(iﬁxin;

ion (outside of the computational domain); denote t}'le solution in X
e by U(z,y). Denote the solution in the computational domain (the
'rﬁilr?;lna{ed revgion) by u(z,y). These two solutions must match across
i

the interface y = b,
du(z,b) 0U(z,b)

u(z,b) = U(z,b) and 5 Oy (50)

Now, for diffraction problems (see §5), U is given by (46) as

= U(E,b) iko(y — B)?
vte) = -3tr-090 [ g en (Mg

for y > b. Although this formula shows that U (z,y) fie}f?endts S(c)ll:rl(}if
on values of U(¢,b) for £ < z, it is not. easy to use W}llt in s and ord
numerical schemes. Instead, we use (4§); if we set y = b therein, an

the matching conditions (50), we obtain

Ou(z,b) _ .o [7OuEb) _df (51)
By “‘Q/O 96 Ji-¢

The formula (51) is exact. It shows that the c01.1c¥1t10n ti b(fa 1rnp(o3s5e)d
on y = b is non-local and not an impedance CODdlth.n' of thet(.)rrn. ﬂa;
However, when (51) is discretized, it le?,ds t.o a COIldlthDdt at is s1rrllized
to an inhomogeneous impedance condition; it can be called a genera

impedance boundary condition.
From (51), we have

(9uj . = au(€7b) dé
—Bj = 1Q/0 o€ %5 ~ £’

' i i b on-
where uj = u(z;,b). We assume that u(€,b) is approximated by a ¢
tinuous piecewise-linear function, so that

Au(€,b)  ultt —ul

= for z; < £ < z141.
ot Az

Hence )
=Y (ut —up) Li(z)), (52)
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where

Trg1 dé- 219

i
Liz)= & [ _de
WA ), et a VEmE-vETEm),

whence
Liz;) = jTﬂ (VimTi-vi=1=7).

Rearranging (52), we have

% — ujL, ( J=1 —

oy~ li-i(z) = —y Lima(2) + Y (upt = ud) L(z)
=0

-1

= Zué {Li4 (z;) — Li(z;)} - USLO(W)'

=1

If we substitute for Li(z;), we obtain

c?u,{ .=
" J - ]
7y +au = Z bju} (53
=0
as our generalized impedance boundary condition on y = b, wh
= b, where
. - _ 2i0
Az’ (54)
\/Z; VA 1) ’ (55)
b{ _ 20 (
T J—l—\/J—l~1—\/j~l+1), (56)
forl=1,2,... j-1,
7.1 The diffractive boundary condition
Th . . .
div?d::ajzs-llsl ab9ve 18 appropriate when the lateral boundary at 4 — b
Citides i u{nmated region (y < b), where the wave field v}s//ill by _1
umerically, and a shadow region (y > b) into which th vaved
e waves

are diff; i
Vive Ijo;z;:ng. We 'Cf?LH the Ciorresponding condition on y = b the 5
ry condition. 1t is implemented into the parabolic m (;ﬁ;”;)&
odel by
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recalling that this boundary is at y = *(yn-1 + yn); thus, we use cen-
iral differences and averages to approximate du} /Dy and uj, respectively.
The result is
-1

b{(uﬁv + “5\]—1)-

.

J J
Uy — Uy | @5 J 1
s (i) -3

i
<

This is the diffractive boundary condition; it is used forn = N in the
matrix formulation of the problem.

7.2 The transmitting boundary condition

Suppose that we have a transmission problem (see §5) with a known inci-
dent wave field uinc(z, y); in general, uinc(0, y) does not vanish identically
for y > b. Let us perturb the incident field within the computational
domain (y < b), so that the total field is u(z,y). The difference,

(57)

U = Ujnec = Uscy

say, will satisfy ue(0,y) = 0 for y > b, and hence will solve the same
mathematical problem in the shadow region as U. Thus,

Ouge(z,b) . T Quge(€,b)  dE
ady =i /o 9 Vr-E

It follows that we can derive a boundary condition for us. on y = b by
discretization, as for the diffractive boundary condition.

In practice, a boundary condition for u is often preferable. Combining
equations (57) and (58), we obtain

Ou(z,b) . T Ou(,b) dE " (g
ay —IQ/O _—_65 \/93—~—€+EHC( )7

F‘inc(m) = 8uinc(1‘7 b) . lQ /z 8U’inc(élv b) df
oy 0 73 vz —¢
is known, in principle. If upe is only known numerically, (59) can be
discretized as before. If uine is known analytically, further progress may
be possible [50].
In summary, we have two alternative transmitting boundary condi-
tions, one for uy (the change in upe due to any scattering from the
computational domain) and one for u (the total field, namely the sum of

Uine and usc)-

(58)

where

(59)
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7.3 Results and extensions

To illustrate the use of the perfect boundary conditions, a numeric
model was set up with Kirby’s transmitting condition (37) at y = 0 an
a perfect boundary condition at y = b. Various incident fields were use

the waves were observed to transmit through y = b with only negligib
reflection. The boundary at y = 0 induced spurious reflections (excep
for incident plane waves). These numerical results, described in [50
suggest that the perfect boundary conditions are efficient and effective. I
practice, the conditions would be used between a constant-depth regio
(shadow region) and a variable-depth region (computational domain
Application to variable water depths in both domains is straightforward
through the use of a variable transformation along the boundary, as use
by Liu & Mei [8].

Perfect boundary conditions can also be developed for the wide-angl
parabolic equation, (31). The key result is that the wave field in th
shadow region is exactly modelled by [50]

Ou(z,b) ik [®

=) oAz — £)) 2488 g,

dy Vg 143
where Jy is a Bessel function and
k‘oao
A= .
2&1

This can then be discretized as before; see [50] for further details.

8 Porous regions

In this section, we generalize the analysis above so as to treat the prop-
agation of water waves in regions bounded laterally by porous media,
which we model using the equations of Sollitt & Cross (54]. The sim-
plest problem of interest is when waves are obliquely incident on a thick
porous breakwater lying along the z-axis. We derive a perfect boundary
condition for use in numerical models.

To be specific, we can consider the following diffraction problem, in
which there is a thin rigid semi-infinite breakwater along z =0, y > 0.
We suppose that the second, third and fourth quadrants in the (z,y)-
plane are filled with water, and that the first quadrant is filled with a
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ous medium. We suppose further that waves are incident from the
eogrion z < 0; thus, the exact incident field is given by
r

C' (.’17 y) = eiko(zc059+ysin9).

mnc b

The incident waves are reflected by the rigid faf:e of the breakwa?er (mh=

0.y > 0), diffracted by the corner at the origin, and refracted 1n‘Fo the
7oryous qt’ladrant. The exact solution, then, is governed by (10) in the

p

water, namely

(V2 + k) =0,
» different Helmholtz equation in the porous medium, namely
(V2+K)Z=0

(K, is defined below), continuity condit.ions relznmt.ing ¢ an(i1 Zbacriss ;t}:;
interface (y = 0, = > 0), and zero-velocity conditions on t .e‘u regSIN er
(z =0,y >0). This problem has been formulated by Meister [55],

) h;i rllr(l);kze;fo;i:::i \;ve start by invoking a Kirchhoff approximation [58,
Chap. 8]. Thus, we suppose that ¢(0,y) is known for y < 0, and th:nﬂtl:};
to calculate the transmitted field in & > 0. Usually, one assurpek that
¢(0,y) = (inc(0,y) for y < 0, but one C.Ollld suppose that ((0,y) 13 0 N
from experimental measurements. This leads to a problem z)ose 1r;i uhe
half-plane z > 0, which is itself composed of .two qua.dran Z,l one o
with water and one filled with the porous rnedn'nn. This problem 1s sthe
complicated, although it has been studied previously [57]. However, the
generalization to more complicated problems, such as a porous-wa

be intractable. ' .

Chm'}r(l)erlr’ljlizr?usr:ﬁer progress, we retain the Kirchhoﬂ“‘ apprommat(;op, but
also invoke the parabolic approximation. Thus, the incident field is now

given by 0

uinc(xa y) — e-‘Y:n+imy’

ikoz

where Cine(%,y) = Uinc(2,y) €7,
v = 3iko sin® 0 and m = kosinf.

We aim to calculate the wave field in z > 0, using simple parabolic

models. . '
Writing ¢ = ue'*®, as before, we obtain

o
Oy?

20u _

+ 7 =0 in Q-,
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where Q- = {(z,y) 12 >0,y <0} and Q2 = 2iko /7.

We suppose that the first quadrant Q+ ={(z,y) : 2> 0,y >0}
occupied by a rigid porous medium. The fluid motion within @, m
also be described using a potential and a modified free-surface bounda,
condition. These equations have been derived by Sollitt & Cross [5
see also [58, Appendix A]. The porous medium is characterised by thr
parameters: the porosity, e, the linear friction factor, f, and the inerti
term, s; all these parameters are taken to be constant here, All wa
motion in Q4 is damped if f > 0. For our parabolic model in @

we choose the ‘least-damped’ wavenumber, K; this is the root of t
complex dispersion relation,

w?(s +if) = gK; tanh K b,

in the first quadrant of the complex Kj-plane with smallest imaginar
part. To get a parabolic approximation, we write

Z(w) = U({l:) eiKlz’
whence U satisfies

o
6_y7 + 7

U _
o0 ma.

where

02 = 2K, /r.

The boundary conditions on z = 0 are

u(07y) = uinc(O, y) = eimy

U(0,y) =0 (63
where we have used (60). There are also continuity conditions across th
interface between the water and the porous medium. These are [58]

3¢ /3y = cd7/dy (=(s+if)Z

In terms of u and U, these become

for y < 0, and

for y > 0,

and ony=0,z>0.

€ Ju /By = edU/dy and ue = (s + if\U (64)

ony =0,z >0, where

:‘ﬁ:ko—](l.

Finally, we also assume that u and U are bounded for large |y|.
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8.1 Solution in the porous region Q)

We apply the Laplace transform in z, defined by (44), to the differential
equation (61). Making use of (63), we obtain

I
—a—y—z + WleU ——‘ 0,
which has the general solution

U(p,y) = C(p) exp{iyQi/7p} + D(p) exp{~iyQs/7p}.

Now. from the definition of the complex wavenumber K;, we have

K, =|Ky|e® with 0<é<7/2,

and so, given (62), we define ; by

O = (1+i)V/|Kq|/m e

Then, we must have D(p) = 0 for boundedness as y — oo. Hence, on

y = 0, we have
C(p) and
i01/7p C(p).

U(p,0) =
T /oy

In fact, for all y > 0, we have
aU |9y = i +/7pU.

This is exactly the formula (47), with Q replaced by ;. Inverting and
setting y = 0, we obtain equation (49):

e d
—in, [0 _dt

oU(z,0) .
06 z—¢

Y

(65)

8.2 A perfect boundary condition

In order to derive a perfect boundary condition for u, the soluti-on in the
water, we use the interface conditions (64) in (65). The result is

: “0 omin(e=6) dé 66
len/O 5 (u(€.0) o ()

Ou(z,0)
Yy
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where M = eA/(s +if) and A = /9. This is the exact boundar
condition to be imposed on u(z,y) at the porous wall y=0.

The exact condition (66) can be discretized exactly as done previ
ously [50]. For simplicity, we use a uniform discretization in z, wit
stations at z,, = mAz, and then approximate u({,0) e (rather tha
just w) by a continuous piecewise-linear function; hence

(d/d€) {u(¢,0) e} = (ugtt eimoms — gl ") /(Az) for z; < £ < 2.

Then, the integration in (66) can be done analytically; this gives

Od . izt
?92;- + Mau] = M Z b] e7ixli-1) Az u} (67)
=0

as our generalized impedance boundary condition on the interface y =0,
where uj = u(z;,0), and the coefficients 4 and b{ are exactly as for the
non-porous case (they are defined by equations (54)—(56)).

In the special case where Q+ is filled with water, we have

s=e¢=1and f =0,
whence
Ki=ky,k=0and M =1,

Then, (66) and (67) reduce to (51) and (53), respectively.

Note that the formulae (66) and (67) correct those given in [59], where
incorrect interface conditions were used.

9 Application of conformal mapping

Wave prediction in realistic coastal situations is often complicated by the
layout of breakwaters and other hard structures coupled with variable -
depths and currents. These complicated situations can often be simpli |
fied if a coordinate transformation is used that conforms to the physical
boundaries. Hence, we consider a general class of conformal transfor
mations from the Cartesian coordinates (z,y) into boundary-fitted co-
ordinates (u,v), so that no-flow boundary conditions can be applied on

coordinate lines. We then describe parabolic approximations in the trans-
formed domain,
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Boundary-fitted coordinates have been used extensive’ly in I(J).thzz f}i;ii?
with good success [60], [61]. In the field of wave propagatlor;l, iu ¢ Boie
sevain [62] transformed the parabolic I'nodel into a.non;19rt ogonah ;:nnel
dinate system to examine the propagation of waves in a 1vertg1ndg ;: e
(harbour entrance). Kirby [63] showed that it is 1mportantt}:) eter nine
the parabolic model within the mappe'd domain (rather t axll ?é)ﬁ 3(/1 2
conformal transformation to a parabohc' mo.del). Tsay el al. | g
veloped some low-order parabolic approx1.mat10ns for severa %eome re C,
while Kirby et al. [65] developed parabolic mod.els for sef/erztC ' geornThe
domains for both small- and large-angle parabolic ap'pIOX}mablonsk.WMe ry
also presented laboratory results for thela case of the diverging brea .

We start with the Helmholtz equation,

V) + [k(2))%p = 0.

In the physical domain, ®() is foun.d by solving this ;quatl(;le;lig}tli
given complicated geometry. Alternatlvelyj we canl map t Z p1:go o nts
a conformal domain, which is identified with the mdep_en denf vartlie:) > ir;
u(z,y) and v(z,y). (We will not use u(z) as an amplitu Tehur;rcla o
this section.) The dependent variable becomes 1 (u,v). e th'(];‘)tpthe
procedure is straightforward [65], [66]. Fi)r all cases, we arrange
1 1ls are mapped into v = L. S

Char’;‘rlli f;(:i‘ll:iang governiig equation in the conformal domain 1s similar

to that in Cartesian coordinates,

82¢ 82"1) e 2 =0 (68)
-a_u_g-*"a}?_‘_[ﬁ(uvv)]w 3
where i
and J is the Jacobian of the transformation, defined by
0z dy Oz @
)= 550~ Budu’

Various numerical models can be developed from (68); see [66] for several,

including angular spectrum models [67]. . '
- {IN; cgan ognly obtain separated solutions of (68) if K? is of the form

K2(u,v) = Ji(u) + Jo(v).
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Then, with 9(u,v) = U(u)V(v), we obtain the following equations for {J
and V:

U'+ (7= U = o,

V4 (T + X))V = 0.
In particular, if J, = 0, the lateral eigenmodes for the channel are
Va(v) = cos[Au(v+ )] with
just as for the Cartesian case. Alternatively, if J; = 0, then we obtain

U(u) = ™ as a propagating mode; here, we have replaced A2 by —A\Z2,
giving

1
An = snT vy,

V' (J = AV =0

as the equation for the lateral modes.

9.1 Examples

A logarithmic conformal mapping is convenient for illustrating the var-
ious approaches to wave modelling. This mapping converts radial lines

and circles about the origin in the physical domain into orthogonal straight
lines in the mapped domain.

9.1.1 The diverging channel

The first example is a constant depth, radially diverging channel with
straight vertical impermeable sidewalls. The mapping is w = log(z/ry),
where w = u+iv, = z +iy and ry is the distance from the origin to the
mouth of the channel. The mapping can be rewritten as u = log(r /7o)
and v = 0, which, with the exception of the presence of the logarithm,
looks like a polar-coordinate transformation. The channel sidewalls lie on

v = v, = +0,. In terms of z and Y, the inverse mapping gives z = roe”,

or, & = roe’cosv and y = roe*sinv. In the z-plane, the waves are

supposed to propagate in the positive z-direction, while in the mapped
domain, the waves will travel primarily in the positive u-direction.
The Jacobian of the transformation is J = ré e

of u only. Thus, J;, = 0, whence V(v) = cos[A(v + v,)] and
U+ [(kroe*)> = XU =0

which has general solution

7

Ulu) = Ady(kroe*) + BY)(krq e*),

, which is a function
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h and Y, a u i or rigid alls at v = 0 = :i:Hg (SO
J Ire liesself nctions. For rigl W. ! ] '
:Vl airf)b '—-)\‘ 9[) a‘;‘ld for waves propagating in the direction of u mcreasing,
)

we readily obtain the solution

»(r,0) = i an HSY (kr) cos Ba(0 + 02), (69)

n=0

where H/(\U = Ji+iY) and A = B,, with 8, = %mr/ﬂ.g. Given the potential
at r = ro, the modal amplitudes a,, are easily. obtfnned. -

We note that (69) is the exact linear solution; it can also be obtaine
by separation of variables in plane polar coordinates [65].

9.1.2 'The circular channel

The second example is a constant depth channel with vertical sidev&(/ia‘lls
laid out in a circular planform. Let r1 and 3 be the inner and outer ra us
of the channel, respectively. The waves are supposed tof proptz;lgate pfﬁlh
i , ise i imuthal (8) direction, from the mou
arily counter-clockwise in the azimut .
r;; theychannel located at § = —7/2. In the mz?pped dorr‘la‘ln, th(ei.chatr}nel
is straight, with the waves again propagating in the positive u-direc on.
Here the conformal map is somewhat different (to keep the same u prin-
cipal propagation directions): w = /2 —ilog(z/rm), where rm —-1d/T1;21i
This corresponds to u = /2 + 6 and v = log(rm/7). Tl‘he outer si ev}vlﬂe
of the channel is mapped to v = —vy = log(rm/r2) = —3 log(rg/rli)(zuivw/z)
the inner wall is mapped to v = v;. In terms of z, we have z = rme ,
—V a1 —_— -V TR
which leads to z = rpe U sinu and y = ~Tme coE ! o .
The Jacobian of this transformation is J = Tfne v which is a fuTlcti(})ln
of v only. Thus, J; = 0, whence U(u) = ™ for propagation in the
direction of u increasing. V(v) satisfies

V" + [(krme™)? = AV =0, (70)
which has general solution
V(v) = AJy(krme™”) + BY)\(krme™).

At the outer wall r = ry, we have v = %log(rl/rg) = —v, and the
boundary condition V’(—v;) = 0; therefore

V(v) = Yy(kro)Jx(krme™") — Jy(kra)Ya(krme™).
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At the inner wall r = ry < rg, we have v = v, and V'(v,) = 0, giving

Yy (kr1)Jy (kry) — Ji(kr )Y (kry) = 0. (71)

This is an equation for A. It is known that (71) has discrete roots; call
them A = a,, with n = 0,1,2,.... There is only a finite number of real
roots (0 < an < kry); these give the propagating modes. Equation (71)
also has an infinite number of purely imaginary solutions; those with
positive imaginary parts give the evanescent modes. These solutions have
been discussed by Buchholz [68] in the context of curved electromagnetic
wave guides, by Johns & Hamzah [69] in the context of long water waves,

and by Rostafinski [70] in the context of acoustics.

Ordering the real eigenvalues from the largest to the smallest, we find

that the first eigenvalue corresponds to the zero-th mode, which has no

zero crossing in the transverse (radial) direction. Therefore the mode

looks like a propagating wave train, but confined to the outer wall; it is

the annular equivalent of the ‘whispering gallery mode’ as it is large on

the outer radius and decays rapidly and monotonically in the (negative)
r-direction. The next eigenvalue corresponds to the first mode, with one
zero crossing, and so on.

The problem of solving (70), together with V'(+v;) = 0, is a Sturm~ |

Liouville problem. Let V,(v) be a solution corresponding to the eigen-
value A = ay,

Vo(v) = An {Y;n(krz)Jan(krme_”) - J;n(krg)Yan(krme'")}

(recall that 7 = re™). These eigenfunctions are orthogonal; moreover, -

they can be made orthonormal by an appropriate choice of the constant
A,. They are also complete, so that we have

P(u,v) = Z ay, et V. (v).

n=0

At the beginning of the channel, u = 0 (§ = —7/2), we know (0, v),
whence the coeflicients a,, can be found:

o= [ Zwm,vmw)dv-

Again, this solution is exact; it can also be obtained by separation of

variables in plane polar coordinates [65]. Numerical evaluations of this

solution (for waves incident into a 180° turn) are given in [65] and [66].
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9.2 Parabolic models

In the mapped domain, we have to solve (68). This is exactly the equa,‘mo‘n
discussed in section 3, and so we can choose any apprc?p'mate p'arab.ohc
model. Assume that waves propagate mainly in the positive u-direction.
Then, one choice is to write

(u,0) = Alu,v) exp {i / * k() du'} ,

where Ki(u) = K(u,v) is a ‘reference phase function’. based on one
particular value of v. The parabolic equation for the amplitude A is (17):

2
BA . . oy 04
2k 5 + KA+ (K - (NA+ 55 =0

This is equation (28) in [65]. Alternatively, if we can identify a represen-
tative constant wavenumber, Ko, then we can write

¢(u’ ’U) = A(U, 'U) eiI\"ou.

This leads to various possible equations for A. For example, the equation
of Corones and Radder, namely (23), becomes
- 2
JA g . 0K O'A _
211{—8-{[ + 2K (IX — IXQ)A + lA-a—u- + Fo2

This is (30) in [65]. This paper describes further parabolic mod‘els, and
gives comparisoﬁs between numerical solutions, the exact solutions de-

scribed above, and some experiments.

10 Weakly nonlinear waves in shallow wa-
ter

To date, most of the emphasis in parabolic model developrm.ant has cen-
he mild-slope equation to problems of intermediate-
depth wave propagation. These approximations may be extendedt;lo
include nonlinear effects by utilizing the correspogdence..bfetween e
parabolic amplitude evolution equation and the cubic Schrodmg'ef1 eqza—
tion for narrow banded wave trains [11, 12]. Howevgr, the th}g .-ort;:r
Stokes expansion on which these models are based is not valid in the

tred on applications of t
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limit of shallow water. It is possible to empirically modify the model co-:

efficients to avoid the shallow water singularity [71], but the fact remaing

that the narrow-banded envelope equation is not a good representation’
of physics in the final stages of wave shoaling or during wave breaking,

where the wave form and spectral content evolve rapidly due to near-
resonant interactions at the second order in nonlinearity.

The construction of a more valid basis for shallow water wave propa- ‘

gation rests on a recognition of the fact that wave propagation velocities

approach a common value v/gh independent of frequency, thus allowing
all waves to be regarded as non-dispersive shallow water waves with only

weak deviations in phase speed. If we let # = kh characterize dispersive

ness and 6 = a/h characterize nonlinearity, then the scaling regime which
provides most of the basis for modern work on propagation modelling is

the Boussinesq regime u < 1, § < 1, 6/p* = O(1), which encompasses

the Boussinesq equations, the one-dimensional Korteweg-deVries equa-
tion, and the weakly two-dimensional Kadomtsev-Petviashvili equation.

The foundation of this theory is introduced in a separate chapter [72]. We

concentrate here on the aspects of the theory related to the construction
of parabolic approximations.

10.1 Boussinesq equations

The Boussinesq equations are derived by constructing a series solution to
Laplace’s equation in the fluid interior, and then using the resulting series
to specify the velocity potential appearing in the free surface boundary
conditions [72]. The order of approximation in the resulting evolution
equations corresponds to the level of truncation in the expansion param:
eters 4 and &; the Boussinesq equations are obtained by retaining only the
leading order effects of each. For variable depth, Boussinesq equations
were developed by Peregrine [73] using the depth-averaged horizontal ve-
locity and the surface displacement as dependent variables. Let ag, ho
and w be the characteristic amplitude, water depth and frequency, re-

spectively, of the wave motion. These are used to define dimensionless
variables as follows:

t = t, /, N — w ,y), [ i’
h’ — i — hO 7 Ui
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here, W represents the depth-averaged horizontal ;feloci;y vectzr. Th;alll*e
are two dimensionless parameters, 6 ='a0/h0 and po= wiho/g. / ssumthi
that these are of the same (small) size, and omitting the primes,
following Boussinesq equations are obtained,

%% + V- [(h+6n)a) =0, (72)
= 9 _ h? 0 _
9% st vya s vr = { VIV () - rovwb, m)

where V = (8/0z,0/dy) is the horizontal gradienF O.I)er'z),}‘ior.h r[.‘he fc:—l
sulting model equations are rotatio.nally 'symrr.letnc in the OI'lZ(;I; ol
(z,y) plane, and thus are fully two-dlme'nsmnal in the same 1setr'lse a the
Helmholtz or mild-slope equations studied above'. The evolution e:Gq
tions differ from the models above in that t.he entire frequency spec rumh
would be represented by a single calculation, ratl?er‘thandhiwmg tei;;cn
frequency component represented by a sepa'ra,te elliptic rn(t)) ?- equa,rOXi_.
This distinction is lost during the construction of the para odlc appr -
mation, where the equations are transformed from the time ornamflz _
the frequency domain. Various authors ha.ve ext.ended the rar;ge o 'Se
plication of the Boussinesq model by making 'adjustments to 1lspe1rs11b
and nonlinear terms. This work is reviewed in the present volume by

Kirby [72].

10.2 Kadomtsev—Petviashvili equation: a parabolic
time-domain model

Before constructing a parabolic approxi.mation directl.y from t?ihB?cl-lssé:
nesq equations, we review what is essentially a }?arabohc 'forn;.o eslfrirrxst
dependent evolution equations themselvgs'. This approxima ‘Oi wa et
introduced by Kadomtsev & Petviashvili [74], and t.he res%‘lh ing ¢ a,a1
of equations are generically referred to as KP equations. «:hgeneris
development of these equations in the context of water wave theory
. i 2 ’ . .

dlsc’i‘liseei;lagol]ic approximations developed above imply a relatl(oinshx}_)
between z and y direction wavenumber coeﬂia.ents £ = kcosb and m =
ksinf. Referring to §3.4, the exact relationship between k, £ and m 1s

given by k= VETmE= 1+ m2 (74)
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With 6 small, the ratio appearing in the last expression in (74) is small,
and the square root may be accurately approximated by the binomial

expansion, giving
I m? :
’“:‘(”m)- (75)

Let us compare this to the representation of a plane wave in the KP
equation. The KP equation for a dependent variable n in a uniform
medium may be written as :

9 (0n 9dn 3c On
a—m(a-l-c

Ch2 037}) + C 8217

e "5 T 6 o) Tap = (T0)

Assuming that 7 is written as

n= aei(lz+my—wt)

(77)

and substituting in the linearized, nondispersive version of (76) then gives

1 2

which is identical to (75). The KP equation thus employs exactly the
same assumptions about angular relations as are used in constructing
the lowest order parabolic approximations for plane wave propagation.
Interestingly, there have been no attempts (that we know of ) at extending
the KP equation formulation to include higher-order approximations such
as (29). It is also not clear that doing so would yield a model equation
whose numerical solution would be more efficient to obtain than the
solution of the fully two-dimensional Boussinesq equations.

Liu et al. [75] have used a variable-depth form of the KP equation to
develop a parabolic equation system for shallow water wave propagation.
The resulting equations are essentially equivalent to the equations derived
directly from the Boussinesq equations, illustrated in the next section.

10.3 Parabolic approximation of Boussinesq equa-
tions

Liu et al. [75] examined the propagation of periodic waves in shallow
water, using the (dimensionless) Boussinesq equations, equations (72)
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and (73) as well as an equivalent formulation based on a Var_ia'ble.depth
KP equation. They assumed a Fourier expansion for 7 and @ in time,

77(-’15775) = C’n(m) e—int,

M|

() €™,

Ms‘ZMs

T (z,t) =

N

n=-=0c0

where (_, and -, are the complex conjugates of {, and Uy, respec'tively.
Substituting these into the Boussinesq equations yields an equation for

each Fourier mode:

CinGat Ve (W) 45 Y V() = 0 (19)

2p? § = o _
—int, + (1 —_ u—é—h> vV, + 1 s;oo \Y4 (us ‘qU,-;) = 0. (80)

At lowest order,

T o= - VG (14 06) (81)
Ve, = 2 (1406 (82)
except for n = 0, which gives
W = - %ij_s +0 (&%, 887,
o = — %;ES'ES +0 (6%, 1%, 6p%) .

Substituting equations (81) and (82) into equations (79) and (80) and
eliminating %, gives a set of elliptic equations for (n,

- [(1- £ e

3

) 9 9 _ n+
= 2—};{2(" _S)Cscn—s hZ(n_

E s#n
1 (62(5 O*(ns

) VCS * VCn—s

0z? Oy? Oz By Oz dy

8
S

— 2k z s(n —s)

s3#0,n
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for each n, with an error of O (82,842, ut).

To obtain a parabolic form, Liu et al. [75] assumed that the free .

surface displacement ¢, could be written as

Cn = ¢n einz,

where ¢, () is a spatially varying amplitude. Substituting into (83) and

assuming that the z-variation of 1, is small, a parabolic equation results
for each amplitude:

. O, %, 1 0G, o in 0G 1
2in + — T ———n? (1 - =
Oz dy? G, Oy Oy + [Gn oz " (1 Gn)] ¥
6 oo
= e { Z [hs(n +8)+n?— 32] Ystn_s
+ 5\ O O,
—h n s
; (n - S) dy Oy
1 0*thrs Ohs Oty
2h2 _ _ s N—s
T gn—s[s% 9y? (n s)ay dy ] ’
where

G,=h-— %/ﬂnzhz.

This parabolic form of the Boussinesq equations is also solved conve- |

niently by the Crank-Nicolson scheme; see §4.

Liu et al. [75] examined the refraction and shoaling of a shallow water-

wave over a topographic lens, using the laboratory study of Whalin [76].

They compared the amplitudes of the first three harmonics down the =

centreline of the wave channel with laboratory data from three different
water depths; they found best agreement with the shallowest case.
Yoon & Liu [77] applied a similar model to describe Mach stem re-

flection along a breakwater, while Yoon & Liu [78] consider the case |

where a strong current field is imposed and interacts with the propa-
gating wave components. Chen & Liu [79] have extended the parabolic
formulation to incorporate improved Boussinesq model equations, and
Kaihatu & Kirby [80] have further modified the parabolic model for-
n“..mlation to improve the accuracy of shoaling terms and to incorporate
dispersive effects in nonlinear terms. Finally, Kaihatu & Kirby [81] have
developed a parabolic model where wave coupling takes place through

Gravity Waves in Water of Finite Depth 207

quadratic three-wave interactions, as in the shallow water models devel-
oped here, but where correct linear dispersion effects are incorporated at
all resolved frequencies.

Liu [82] has described a model for energy dissipation in breaking waves
in the parabolized Boussinesq model. Further applications are reviewed
in [72].
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