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Abstract

An extension to the linear mild-slope approximation for
surface water waves which accounts for the effect of a continu-
ous cover of floating ice is developed. The ice is allowed to have
spatially slowly varying properties, such a^s thicknes, elasticity
and in-plue compression,  whi le the water column hro var iable
finite depth and may be slowly moving. Results are given
for refracting and shoaling waves over planar topography. A
parabolic approximation for conbined rcfraction-diffraction is
used to study several example problems.

key words: sca ice, surface waves. wa!.e rrrodcls, wavc propaga-
tron

Introduct ion

A continuous ice cover has a marked effect on the properties of wind
waves in coastal regions during the winter season. To date, most ana-
lyt ic studies of the behavior of waves under icc have concentrated on
deep water phenomena, or have considcred restr icted classes of mo-
t ion in shal low water for which analyt ic rcsults are simply obtained.
In this study, a new framework is providcd for studl. ing progressive
watcr waves under ice in water of l in. i te depth. ' lhe rnodel described
here retains the usual efects included in the rni ld-slope approxima-
t ion for surface waves (I{ irby, 1984): slowly varf iug depth, slowly
varying ambient current, and ful l  frcquency dispersion. In addit ion.
the new model accounts for a continuous ice cover, and can account
for the effects of slowly varying ice thickncss and slowly varying in-
plane compression forces. The result ing model provides a unifying
framework for all previousiy obtained geometric optics results, and
a.llows for the development of the parabolic approximation in order
to study combined refraction-diffraction.

A derivation of the governing equations is provided first. Then,
the refraction approximation is obtained, and several simple results
following from Snell's law are presented. We then describe a parabolic
equation and show several results which indicate the tvpes of effects
to be expected.
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2 Derivation of the linearized wave model

The governing wave equations are obta.ined by means of Hamilton's
variat ional principle, using an un-averaged Lagrangian. I lamil ton's
principle is given by

t ' [ [ u t d * = 0 .  ( r . )
Jx Jt

which indicates that  the integral  of  a Lagrangian I  over the prop-
agat ion space (x, t )  is  stat ionary wi th respect  to var iat ions of  the
unknown dependent var iables determin. ing t r .  I lere,  x is  a hor izontal
coordinate system taken to l ie  in the plane of  the st i l l  water  surface.
Luke (  1967) showed that  taking 1,  to be the integral  over depth of  the
f lu id pressure al lows for  the complete speci f icat ion o[  the boundary
value problem for  inv isc id,  i r rotat ional  wave mot ion wi th no surface
tension.  Using Bernoul l i 's  equat ion,  we may wr i te

where V denotes a gradient  operator  in 3-space.
' Ihe formulat ion of  Luke was fur ther extended by Simmons (  1969 )

to inc lude the e{ Iect  of  sur face tension.  \ \ Ie now consider adcl ine a
cont inuous ice layer to the f lu id column. The ice has densi tv p;  < p,
th ickness d,  e last ic  modulus E and Poisson rat io rz.  We def ine a
stiffness D by

n -  E d 3
" -  l r l - t n  ( r l

We also consider an in-plane stress in the ice, charartcrized by the
stress tensor 4;, which may also vary slowly in space.

The Lagrangian is extended by adding the appropriate kinetic
and potential energy terms to the tr- form, giving

t = I'npd.z = -p ll^{t" + o, +}tvof\ a, (2)

L ;  =  L . +  K ; - V
= L,., + Ptd ( n,l' - T:t on o't

2  " " '  2  0 t ; 0 t ,
D

l(v|il, - 2(t - v)(\,,\yy - ir,rl (1)
where 1(;, V; denote the kinetic energy and potent.ial energy associ-
ated with the ice. The added terms denote, in order, the kinetic
energy associated with the vertical motion of the ice. the chanse in
potential energy of the fluid resulting from work done againsi tlie
in-plane stress of the ice plate, and the change in potential energy
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a€sociated with the bending energy of the ice plate (Love, 1944, sec-
tion 329). We retain only small displacement approximations. We
will also restrict our attention here to isotropic in-plane compression
of the ice with compression force T;T;,i = -Td;;. The compression
force may be thought of simpiy as the opposite of the tensile force
appearing in the surface tension problem.

It wili be of some use below to have estimates of the size of several
of the terms in the Lagrangian. We introduce scaled variables by
choosing &-r as a length scale for spatial derivatives and a as an
amplitude scale for the vertical surface displacement. In order for
the gravity restoring effects to give a reference O(1) contr ibution
to the wave motion, we choose $s = alglk as the scale for / and
6Gnyt as the scale for time. Dividing the Lagrangian by pgo2 then
qives the dimensionless form

t -

where thc di rnensionless parameters , \1 and )2 are givcn by

Tk2
)r  = j_ j :_ (6)

p9
Dk4s z =  p g  ( i )

The two )  pa.rameters character ize the re lat ive importance of  in-
plane stress and bending stress as loads on the water column, re lat ive
to the gravitational effect. These may be smail or large relative to
the gravi ty terms depending on the st i f fness of  the ice,  the amount
of  in-plane stress,  and the wavelength or  wave f requency.  On the
other hand, the vert ical  k inet ic  energy term is character ized by the
parameter f rd,  which represents the rat io of  ice th ickness to wave
length.  This rat io is  smal l  for  most  cases of  interest .

2.1 The linear wave model

The leading order approximation for linearized wave motion is now
obtained. Including the effect of a slowly varying but possibly large
current under the ice, we may write the velocity potential / as

a.nd we obtain

F r = c c n ,s
^ (o2  -  k2CCo\
1 2 = - s

(  14 )

where C : olk is the phase speed relative to the current and Co -

0o l0k is the relative group velocity. With the tension and bending
effects included, these integrals do not have simple physical interpre-
tat ions.

The desired governing equations follow by taking variations of tr;
with respect to the unknowns 4 and /. Variation with respect to
4 under the integral (1) and partial integration leads to the Euler-
Lagrange equation

D o  P ; '  a n . ( L v ^ r l + v 2 r 1 \ g z ^ r r * 1 = 0 .  ( 1 5 )
A  + S n +  - a n t t + '  . .  .  p  . . , .  , .  p  . .  p

The operator D f Dt represents a total derivative following the current
U. We allow for slow variations in ice properties by allowing D and
T to vary as functions of x. The last term is a small quantity which

-|r '  * I_*lo,+ ]tvor'] a, + |(v nn)'
-\s 'no'+f;ata1*Y (5)

eva,luates to

.--'(.
t = 2lru1rv - ltt1yy - 7w@"i

f f  + tv n '  U)z = -Vr, '  (F,Vr"d) + 116

t  =  D ( I  -  u )  ( 1 6 )

We neglect e from here on since the remainder of the derivation above
explicitely neglects second-order small terms in the problem for the
fluid column (Kirby, 1984). A number of authors have obtained var-
ious forms of (15), start ing with Greenhil l  (1887). The form of the
equation with variable ice stifness is essentially similar to an equa-
t ion given by Krasi i 'nikov (1962), but with the inclusion ofaddit ional
current, compression and acceleration effects.

For the case ofconstant water depth, the term involving 6 in i tS;
is usually handled by substi tut ing the expression for the constant
depth solution. For the case of a slowly varying depth, we proceed
by taking variations of,ti with respect to /, which leads to the Euler-
Lagrange equation

where

In the absence of an ice layer, the dispersion relation for surface
waves is given by

( 1 7 )

This is basically a kinematic constraint on the fluid column. In the
presence of ice and current, it is likely that the simplest approach is
to treat (15) and (17) as a set of coupled equations. In the absence
of a current, the total derivative appearing in (15) and (17) reduces
to a part ial  derivative with respect to t ime, and the two equations
can be collapsed more simply. The simplest general system results
from el iminating { between (15) and (17), giving

rt tt r { F2- vr, . [F, Vr( )] ] tg I + l r* * v n(Tv nnl * e2n(2Yznn\l = 0
(  1 8 )

No simple generalization to a single-variable equation has been found
for the case where currents are retained.

2.2 Plane wave solut ions

The plane wave solutions for the system described here are well
known from previous studies; they are described here in order to
establish notation for subsequent sections and to check the validity
of the equations. For the case of a domain with constant parameters,
we introduce the exoressions

q = oetvi 6 = -iAei{ (  le)

where a and A are constant real amplitudes and d' is a phase function.
We further introduce

f  =  Iu .dx+ f ( z )6 i , t ) ,  ( 8 )

where U(x) is the imposed, uniform-over-depth current f ield, I  is the
value of the potential at the mean water level, and

/(") = 314-QF (e)
cosn /cn

The quantities / and r7 are then regarded as the unknown dependent
variables to be obtained in a solution. Retaining terms which are
quadratic in the unknowns in .t leads to

L; = -pq6t - pttu .yn6 - + - trr(o oOf - e-rro, + plO,f

+f,{v nd' - o7Ur'^rl' - 2(r - u)(\",\uv - ,t,)l

Fr = l l^ro,=qe('-#)
Fz = lo;f")'0,= ryi! (t- #h)

( i 0 )

( 1 1 )

(  1 2 )

t ; = o * k . U ;  o 2 - g k t a n h k h ( 13)

1l

k = Vl/; w  -  - v t (20)



and

with

We denote

as deflnitions for the wavenumber vector and wave frequency. Using
(19) in (15) and (17) and neglecting ice acceleration effects leads to
the expressions

(2r)

(22)

(23 )
In the absence of an ice layer, (22) and (23) reduce to (13), the
dispersion relation for wave-current interaction with a free surface.

An expression for the group velocity vector may be obtained ac-
cording to

(24)

(25 )

as the scalar group velocity relative to the moving domain, and obtain
the expression

a = r . r - k . U ; o 2 = o 3 ( r - ) r * t z )

o2o = gk tanh &h

0o
"s, - 0k

c ,  =  * ( t  *  #*)  - * (2^2 -  ) , )

pn =f,ooo'(t- )r * ):) = Irt* (;7'

For the case D = 0 and all other coefficients constant, the resulting
model is equivalent to the model described in Keller and Goldstein
(1953), Here, the variable coefficient extension for the shallow water
model appears as the appropriate limit of the more general mild-slope
model obtained above.

3 The refraction approximation
We now consider the equations governing the variation of a wave train
in a slowly modulated domain. We will first obtain a coupied eikonal
- transport model which retains diffraction effects. We will then drop
the diffraction terms to arrive at a geometric optics approximation,
as in Kel ler (1958) and Bretherton and Garrett (1969). Results for
Snell's law shoaling on a plane beach are then presented.

3.1 Eikonal - transport equations

\\re start from the pair ofequations (18) and (20) with the ice accei-
erat ion term dropped. Since the equations may not be combined in
a straightforward manner, we adopt the expressions:

q = aettlt, 6 = -iAei+ (30 )

where now o and. A are real amplitudes which vary slowly in space
and time, and ry' is a real phase function. We a"lso take

^ goo
A= ---- ;

""=K.="*HI

(26)

Finally, an expression for the local average energy density is given
by K = Y n t b ,  u  =  - t t

The first expression guarantees that

V 1  x K = 0

( 3 1 )

(32)

(27)

Note that the expression for o2 in (22) may become negative if
the in-plane compression force acting on the ice becomes sufficiently
large. Under this condition, the ice layer becomes unstable, and it is
usually assumed that a local fracture of the ice would result. We note
here that the effect can be related to the fact that the Hamiltonian
density is not posit ive definite, with the instabi l i ty occurring when
the energy density takes on values which are negative relative to an
undisturbed surface. The effect of in-plane compression on the wave
dispersion relat ion was described by Kheisin (1967), and has been
more thoroughly investigated more recently by a nunber of authors
start ing with Kerr (1983). Schulkes et al (1g87) suggest that values
of ? occurring in the field would not be expected to lead either to
the instability of the ice layer, or to a negative or zero value of Ce,
in (26). However, Liu and MolloChristensen (1988) have suggested
that compression effects are prominant in the field, and provided
an analysis that suggests that the local reduction in group velocity
can lead to large wave events observed in the Weddeli Sea. The
effect of in-plane stress may thus significantly modify values of the
parameters in the dispersion relation under normal conditions. and
should be carefully considered.

2.3 Equation for long waves

For waves which are long relative to the depth of water, Ah takes on
small values and the coefficients in (11)-(12) approach the limits

F 1 - h ; .  F z - 0 (28)

In this limit, water depth can become comparable to (or less than) ice
thickness, and it is usually appropriate to retain the ice acceleration
effects in short wind waves are being considered. In this limit, and
neglecting current effects, the equations may be combined to give

qa - v 1,'lhY 1,(| anrll = Vr, . lghVr, ( I +Y n. ( lv nd + v; ( q v 2 ?) )1.p  'pe  " 'ps  'e i l

which can be used to obtain K when used together with an eikonal
equation. The leading order solution for A may be written as

(33  )

Using (30)-(33) in (15) and (17) leads to a complicated expression
containing a real and imaginary part. Since the amplitudes and
phase functions are assumed to be real quantities, we separate the
parts and obtain

,  90'A = --;A
o6

[:(i)], + "^ l:("". (T)'",'f
+(2^;-^t ,*#) ]  = '  (34)

and

(;)' {' - ffu*r- e') + lo n Itm:'f ^ "^,a,] }
-(1-  ̂ i  +  ̂ ;) - jo^ t#o ^q - D# = o.(35)

where c*= fio* #l (36)

(34) and (35) are the action transport equation and the eikonal equa-
tion, respectively. These equations may be used as the basis for a
combined refraction-difrraction calculation by solving (35) for the
scalar lKl, (32) for the direction of K, and (3a) for the action E/a.
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3.2  The geomet r ic  oPt ics  l im i t

The geometric optics approximation may be obtained by neglccting
difract ion effects in the eikonal-transport model (31)-(35)'  In this

l imit,  al l  starred quanti t ies in the previous sections reduce to their
plane wave approximations, given in section 2'2' \\'e are left with
(32) together with

lK l2  =  k2 ; 6 2 = o 2 o 1 - ) r * ) z ) , ( 37 )

which completely determines the warenumber and wave di rect ion

The t ransport  equat ion reduces to

(# ) ,  -  v6  14c" ;=  6

where  t he  g ro r rp  ve loc i t l ' vec to r  i s  desc r i bed  i n  ( 2a ) .  ' I ' h i s  r esu l t  i s

complet t ' I1 '  analogous to the act ion conservat ion pr incip le developcd

by Rrctherton and Garrct t  (  1969) '  An,"-  avai lable refract ion schcme

useci  to st r r r ly '  the wave-currcnt-var iable depth case may bc s imply ex-

tenclcr l  to i i lc l r rde thc e ' f fects descr ibed hcre by a sui t , : ib lc  redel in i t ion

o f  t h t '  g ro r rp  ve loc r t y  and  d i spe rs i o l i  r e l a t i on .

3 .3  Re f rac t i on  and  shoa l i ng  ove r  a  p l ane  s l ope

l 'or  t .he case of  *aves approaching shore over a one-dimensional  to-

pog rap ln '  A ( r  ) .  t , l r c  r es r t l t s  above  can  bc  g rea t l l -  s i n l p l i f i ed .  Dcno t i ng

d as the :urqle bctween the local  d i rcct ion of  propagat ion and the e

a-t is  a l td i r r t l ros ing conscrvat ion of  wave crcsts in thc y d i rect ion,  w'e

ob ta i n  t he  re l : r t i on
l s i n 0  =  ( ' s s i n 0 o  ( 3 9 )

or Snel l 's  law. Subscr ipts 0 dcnote dccpw;r tcr  condi t ions '  lbr  the

case where wave height  docs not  var-"-  in thc longshore di rect ion (and

in  t he  absence  o f  cu r ren t s  and  t i r ne  va r i a t i ons ) .  ( 38 )  r educes  t o

3.5. wave P€nod = l0 seconds

3 t

no l€

(38)

? { r

t  L i
d4.05 m

1 . 5  ! \
\-.-......--.-_

d = l  m

-  -  -10 , '

d { l m

l) .-'--.--

l 0 r  l 0 - r  1 0 ,

M-0

- -  
1 9 0

Lr t  o ,  ,o "d  =  cons tan t
6 "

Using the expression (27) for  t l ie  wave encrgy and rearranging,  we

obtain ! -  -  K " h ' ,
uO

where 1i"  is  the shoal ing cocf f ic ient  g iveu bv

, .  ( c ' r , o \ ' "  / '  -  ) 1 ' 1  +  r , , o \ ' / '
1 \ i -  l t ; - t  t  N  ,  ( ' 1 2 )

\ t  g '  , /  \  I  -  ^ l  I  ^ 2  /

and 1{, is thc refract ion cocff icient given by

, -  l c o s d o l l / z  1 r . r r
" ' = \ r " r e )  

\ r ' '

These results are identica.l to t,he usual fornts for free surface wares
except for the function of,\r  and 12 appearing in -I i , ;  thc ice cffect
also enters through the definit ions of A and Clg..

Green ( 1978) presented results for uormally incident waves shoal-
ing on a plane beach. His results are identical to those presented here'
A plot of shoaling coefficient IL" (with /i' = I for norrnally incident
waves) is given in Figure 1 for three dif ferent ice thicknesses along
with the ice-free result.  The results here were computed both with
and without the ice acceierat ion effects iu the wave dispersion rela-
tion. The results obtained for tlie two approximations rvere graphi-
cally indistinguishable, indicating the negligible elTect of the ice mass
on the wave properties. Results for obliquely incideut waves wete also
obtained. The trend of results due to refract ion at obl iclue incidence
is essentially similar to the results for the ice-free case. and no further
olots are included here.

Figure 1: Shoaling coefficient 1(, for waves shoaling over a plane

beach (af ter  Green, 1978).

4 A parabolic approximation

\\ 'e now consider the development of  a parabol ic  approximat ion for

near ly unid i rect ional  propagat ion under ice,  fo l lowing thc work of

Radder (1979) and others for  surface water waves.  T 'he usual  ap-

proach to th is problem would be c i ther to spl i t  the el l ip t ic  wave

equat ion into forward and backward-propagat ing port ions,  as in I iad-

der (1979),  or  to employ a WKB -  type of  expansion wi th spat ia l

der ivat ives of  coef f ic ients and ampl i tudes handled in a mul t ip le scale

format.  Since the wave-current  model  developed here is  not  con
venient ly  wr i t ten as a s ingle governing equat ion,  we takc t l te some-

what unusual  step ofexpanding the act ion and eikonal  eqtrat ions and

then recombining them to obtain the parabol ic  approximat ion'  ( I t  is

noted that  the same,resul ts can be obtained using a di rect  mul t ip le

scale approach appl ied to the governing boundary value problerr t ;  see

K i rby  and  Da l r ymp le  ( 1983 )  o r  K i r by  ( 1986 ) . )
As usual ,  the order ing of  spat ia l  der ivat ives is  handled r :s ing a

mult ip le-scale approach.  Taking e to c l taracter ise a smal l  angular

deviat ion between the di rect ion of  propagat ion and the o axis.  tve

rewr i t e  t he  phase  f unc t i on  r , ' , l r ' f i ned  i n  ( 30 )  as

r1 , ( * )=  l kdxe*+0(x)
(1- l  )

The parabolic approximation arises from the assumption that 0 varies

at  a rate proport ional  to e in the I  d i rect ion,  but  at  a s lo ' , r 'er  rate
proport ional  to e2 in the r  d i rect ion.  At  leading order,  we then have

( .10 )

( . 1 1 )

K  =  (&  1ez l s r ) ey !  t | y rey

lK l2 = a2 + e2(2k04+ (0y,)2)  + o(e4)

)i = )1 + u'fi{zxe*, + (dy, )2) * o(ea;

)f = .\2 + zr2frQx/,x" * (ov,)') + o(.0)
o '  = , t  -  kL l  -  e2 ( | y rU  *  | y rV )  =  o t  -  €2o2

(  45 )
(16  )
(  47 )

(18 )

(,re )
where i t  is assumed that the ambient current vector IJ = (U. l /)  has a
g direct ion component of O(e ) relat ive to the r direct ion component.
In order to maintain correspondence with the usual splitting matrix
results, we take the variations of the ice layer and fluid doamin to be
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at most of O(et) in the r direct ion, but up to O(e ) in the y direct ion.
Using these approximations, we obtain the forms

f f .9) (c. + u)l - l(o*) "l +l+c,f .+)l = 0
L \ " 6 /  

'  l r ,  L \ 0 6 l  l v ,  L t  " \ 0 6 l , " , , r 0 ,
li

.,r' '-'', - 
t'

; : , -  " .  ,

t i :  ., , l  
" 'i  ' ' i t l /

ur dlu-ur -" :
t ion of waves by a

,'ii. t,,

ll \li
\ i

li'l ,
' i l  , l '

i"";;;;

, ' l ' 1 ' - ' " ' i 1
t -  n ' L '
U\r \N

' , ]

. . .

r i  "  l

l .  , i , ; ,
i l

' i I , , , :
I'li ' ,i11, il'
il - iiN ",i

, r . , * , r - r r t
l  ice lens

l )  r
r l l ^
i 1

l i -
r i i  ,

"iIrh i

. I : -
l "
I  l l l l

i 1 -
- 1 , ^

rll
1..  i  i i
.tr-- i

i i '

1 l

: .

' t i i .

, i r i
, r i r

-.lilr"'
a t

for the transport equation, and

-r l \rr ,  * ut]  ox2a , l f tr lev,a + ft l^','(ff).1"

(f;,', *,,)]", . |fr"],',).,- ;l*+(ff),,],i = 0(,,:]y

I

I

I

It

+  (?21 ' "1  -  .3 l .cn( ' r , )2o=o (51)
\  f f "  - , /Y  A ' 06

for  the eikonal  equat ion.  I lere,  subscr ipts X2 and Y1 represent s low
spat ia l  der ivat ives at  the indicated ordcr in powers of  e.  \ \ t  in t roduce
a complex ampl i tude n given by

q  =  o " ,  [Eo , ;  6 ,  =  o . , l f  t * - r 1a '+e1  ( : ) . 2 )

where i is some lateraly aleraged wavenumber rvliich varies only in
the : r  d i rect ion.  Af ter  considerable a lgebra,  the e-xpressions (50) and
(51) may be combined to g ive the parabol ic  approxirnat ion

(Cn + U)ay,  + V av,  1 i (Cn *  U)(A -  A)a +

This equat ion may be compared to the form givt 'n bv I i i rb-v (1986)
for  the case of  wave-current  interact ion wi thorr t  ice (er luat ion (55)
there).  and i t  is  again apparent  that  a strong corrcspon<lence exists
between the two models,  aside f rom a s inglc cocf f ic ierr t  appcar ing in
the di f f ract ion term.

' lwo example calculat ions are prcscntot l  ] rore to i i lustrate several
ef fects of  ice on the wave propagat ion prcrblern.

4 .1  Wave  d i f f r ac t i on  by  a  c i r cu l a r  i ce  l ens

As a f i rs t  example,  we consider the c lTect  of  a f in i tc  rcgion of  re lat iver ly
th ick ice on waves propagat ing under an otherwise uni form ice sheet
i n  wa te r  o f  cons ta "n t  dep th .  I he  l cns  l r as  r ad ius  1? : rnd  i s  cen t c r cd
a t  ( zs , ys ) .  Ou t s i de  t he  l ens ,  t he  i ce  t h i ckness  i s  g i vcn  bv  r l 1 .  I ns i de
the lens.  the th ickness var ies accordinq to

/  t \ 2
d (  r . v )  =  d t  *  d A  '  -  ( A )  l :  , '  -  i r  - . r ' 1 1  t t  t l t  -  ! ) u J '  ( 5 { }

Resul ts for  one exarnple are shown in l : igrr re 2.  |or  th is case.  we
take  t he  dep th  h  =  IOm and  t he  un i f o rm  i ce  t h i ckness  d1  =  g .5n r .
The ice lens has a radius l? = 100n2 and au adcl i t ional  th ickness
d. t  = lm. The wave per iod is  5 scconds.  The f igure shorvs conlours
of  ice th ickness as dashed l ines.  and contours of  i ls tantaneous surface
elevat ion in increments of  0.25 t imes the incident  rvave height  as sol id
l ines.  As waves propagat ing f rom lef t  to r ight ,  they encounter the ice
lens and exper ience a marked incrcase in phase speed. This causes
wave crests to bend away f rom the lens region,  d i rect ing the rvale
energy to the regions to e i ther s ide of  the lens.  The local  ef fect  of
the ice also causes a marked decrease in surface displacement ampl i -
tude,  as in the shoal ing examples in the previous sect ion.  I )ownrvave
of the ice lens, there is some recovery of the surface displacement
ampl i tude as the ice th ickness returns to i ts  in i t ia l  value,  but  the
shadow zone created by the ice lens is  dramat ic and pers ists many
waveiengths downwave of  the local ized disturbance.  These resul ts
indicate that a loca.lized region of ice with increased thickness or
stiffness could provide a sheltering effect on structures or stretches
of shoreline downwave of the obstacle.

4.2 Effect of ice on wave diffraction by a shoal
As a second example,  we study teh ef fect  of  a uni form lce covcr on a
focussing and di f f ract ion pat tern caused by a local  var iat ion in wal ,er
dep th .  The  geome t r y  s t ud ied  i s  t ha t  o f  Be rkho f f e t  a l  ( 1982 ) l  r he
exper imental  data f rom that  study has been widely used as a vcr i -
f icat ion test  for  combined refract ion-di f f ract ion computat ions.  The
dctai ls  of  the geometry are omit ted for  brevi ty.

Depth contours in increments of  5 cm are shown as dashed l ines
in l igures 3- .1,  wi th the ei l ip t ical  feature represent ing a shoal  which
decreases the local  depth.  Figurc 3 shows contours of  an instan-
taneous surface,  wi th contour increments of  0.5 t imes the incident
wave ampl i tude.  A focus and the development of  a f r inge pat tern
is apparent  in the region downwave of  the shoal ,  to the r ight  in the
picture.  Also apparent  is  an area of  increased wave height  at  the
lo* 'er  r ight  corner of  the domain.  This ef fect  is  due to the presence
of a rcflecting lateral wa.ll, which causes an area of increased rva."e
height  as waves are turned towards the wal l  bv refract ion.

In f igure 4,  surface contours are shown for  the case where a uni-
form ice la1 'er  wi th a th ickness of  I  cm (giv ing a. \2 value of  1.361 in
dccpwater for  the 1 second wave considered here) covers the cnt i re
domain.  The ionger apparent  warelength ref lects an increase in the
wave phase speed resui t ing f rom bending ef lects in the ice.  A focal
region wi th re lat ively h igher wave height  is  st i l l  apparent  d i rect ly
downwave of the shoal. I{owever, the strength of the focus is quite
weak re lat ive to the ice f ree case.  In addi t ion,  i t  is  apparent  that  the
wave height is initially decreased rather than increased as the waves
begin to focus over the top of  the shoal .  This resul t  is  consistent  rv i th
the general trend towards reduced wave heights during the shoaling
process,  as ind. icated in Figure 1.

5 Conclusions
The present paper has established a comprehensive framework for
studving the propagation of waves under continuous sea ice in the
fi  ni te-depth nearshore environment. In the l inearized approximation,
we have obtained the governing equations for waves in a domain in
which depth, ambient current under the ice, and ice thickness, modu-
lus and in-plane compressive stress are allowed to vary slowly relative
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Figure 3: Surface contours, ice-free case. Geometry of Berkhoffet al
r  1982).

Figure 4: Surface contours, I cm uniform ice cover.
Berkhoffet al (1982).

to the wavelength. The wave action conserlation law has been de-
duced for slowly-varying wave trains and has been shown to be iden-
tical to the result of Bretherton and Garrett (1969). The parabolic
approximation has also been deduced and is found to be essentially
the same as the wave-current model given by Kirby (1986), after some
redefinition of the model coefrcients. Examples have been provided
which illustrate the effect of localized variations in ice thickness on
the propagation of a plane wave, as well as the effect of an ice cover
on processes controlled by localized variations in depth. The case of
wave refraction under ice sheets with either isotropic compression or
a general state of in-plane stress is likely to lead to results of interest
and should be studied further.

In order to generalize the present model for detailed application
to coastal wave climates, it will be neccessary to obtain nonlinear
extensions to the model formulations. An extension to finite depth
of the results of Liu and Mollo-Christensen (1g88) for narrow-banded
Stokes waves would lead to evolution equations of cubic Schrodinger
type in the parabolic approximation, as in Kirby and Dalrymple
(1983) for surface waves alone. However, as pointed out by Green
(1984), the ice-water system provides for the occurence of resonant
three-wave interactions, and so the nonlinear evolution of waves in
the nearshore system may well be dominated by second-order interac-
tions leading to significant modal energ5r exchanges, as in capillary-
gravity wave systems. These effects remain to be investigated in
detail.
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