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Abstract

An extension to the linear mild-slope approximation for
surface water waves which accounts for the effect of a continu-
ous cover of floating ice is developed. The ice is allowed to have
spatially slowly varying properties, such as thickness, elasticity
and in-plane compression, while the water column has variable
finite depth and may be slowly moving. Results are given
for refracting and shoaling waves over planar topography. A
parabolic approximation for combined refraction-diffraction is
used to study several example problems.

key words: sca ice, surface waves, wave models, wave propaga-
tion

1 Introduction

A continuous ice cover has a marked effect on the properties of wind
waves in coastal regions during the winter season. To date, most ana-
lytic studies of the behavior of waves under ice have concentrated on
deep water phenomena, or have considered restricted classes of mo-
tion in shallow water for which analytic results are simply obtained.
Tn this study, a new framework is provided for studying progressive
water waves under ice in water of finite depth. The model described
here retains the usual effects included in the mild-slope approxima-
tion for surface waves (Kirby, 1984): slowly varying depth, slowly
varying ambient current, and full frequency dispersion. In addition,
the new model accounts for a continuous ice cover, and can account
for the effects of slowly varying ice thickness and slowly varying in-
plane compression forces. The resulting model provides a unifying
framework for all previously obtained geometric optics results, and
allows for the development of the parabolic approximation in order
to study combined refraction-diffraction.

A derivation of the governing equations is provided first. Then,
the refraction approximation is obtained, and several simple results
following from Snell’s law are presented. We then describe a parabolic
equation and show several results which indicate the types of effects
to be expected.
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-stress tensor Tj;,

2 Derivation of the linearized wave model

The governing wave equations are obtained by means of Hamilton’s
variational principle, using an un-averaged Lagrangian. Hamilton’s

principle is given by
6//Ldtdx:0, (1)
x Jt

which indicates that the integral of a Lagrangian L over the prop-
agation space (x,t) is stationary with respect to variations of the
unknown dependent variables determining L. Here, x is a horizontal
coordinate system taken to lie in the plane of the still water surface.
Luke (1967) showed that taking L to be the integral over depth of the
fluid pressure allows for the complete specification of the boundary
value problem for inviscid, irrotational wave motion with no surface
tension. Using Bernoulli’s equation, we may write
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where V denotes a gradient operator in 3-space.
The formulation of Luke was further extended by Simmons (1969)
to include the effect of surface tension. We now consider adding a
continuous ice layer to the fluid column. The ice has density p; < p.
thickness d, elastic modulus £ and Poisson ratio v. We define a
stiffness D by
Ed3
e 3)
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We also consider an in-plane stress in the ice, characterized by the
which may also vary slowly in space.

The Lagrangian is extended by adding the appropriate kinetic
and potential energy terms to the L,, form, giving
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where K, V; denote the kinetic energy and potential energy associ-
ated with the ice. The added terms denocte, in order, the kinetic
energy associated with the vertical motion of the ice, the change in
potential energy of the fluid resulting from work done against the
in-plane stress of the ice plate, and the change in potential energy
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associated with the bending energy of the ice plate (Love, 1944, sec-
tion 329). We retain only small displacement approximations. We
will also restrict our attention here to isotropic in-plane compression
of the ice with compression force T'; T; ; = —T'§;;. The compression
force may be thought of simply as the opposite of the tensile force
appearing in the surface tension problem.

It will be of some use below to have estimates of the size of several
of the terms in the Lagrangian. We introduce scaled variables by
choosing k~' as a length scale for spatial derivatives and @ as an
amplitude scale for the vertical surface displacement. In order for
the gravity restoring effects to give a reference O(1) contribution
to the wave motion, we choose ¢g = am as the scale for ¢ and
(v/gk)~! as the scale for time. Dividing the Lagrangian by pga® then
gives the dimensionless form
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where the dimensionless parameters Ay and A, are given by
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The two A parameters characterize the relative importance of in-
plane stress and bending stress as loads on the water column, relative
to the gravitational effect. These may be small or large relative to
the gravity terms depending on the stiffness of the ice, the amount
of in-plane stress, and the wavelength or wave frequency. On the
other hand, the vertical kinetic energy term is characterized by the
parameter kd, which represents the ratio of ice thickness to wave
length. This ratio is small for most cases of interest.

2.1 The linear wave model

The leading order approximation for linearized wave motion is now
obtained. Including the effect of a slowly varying but possibly large
current under the ice, we may write the velocity potential ¢ as

o= /U -dx + f(z)d(x,1), (8)
where U(x) is the imposed, uniform-over-depth current field, ¢ is the
value of the potential at the mean water level, and

cosh k(h + z)
cosh kh )
The quantities ¢ and 7 are then regarded as the unknown dependent

variables to be obtained in a solution. Retaining terms which are
quadratic in the unknowns in L leads to
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In the absence of an ice layer, the dispersion relation for surface
waves is given by
w=0c+k-U;

o? = gktanh kh (13)
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and we obtain
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where C = o/k is the phase speed relative to the current and Cy =
do [ Ok is the relative group velocity. With the tension and bending
effects included, these integrals do not have simple physical interpre-
tations.

The desired governing equations follow by taking variations of L;
with respect to the unknowns 5 and $. Variation with respect to
n under the integral (1) and partial integration leads to the Euler-
Lagrange equation
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(15)
The operator D/ Dt represents a total derivative following the current
U. We allow for slow variations in ice properties by allowing D and
T to vary as functions of x. The last term is a small quantity which
evaluates to 'L

€ = 2Y5yNey = YezTlyy — YrNrr; Y= D(l -v) (16)

We neglect ¢ from here on since the remainder of the derivation above
explicitely neglects second-order small terms in the problem for the
fluid column (Kirby, 1984). A number of authors have obtained var-
ious forms of (15), starting with Greenhill (1887). The form of the
equation with variable ice stiffness is essentially similar to an equa-
tion given by Krasil’nikov (1962), but with the inclusion of additional
current, compression and acceleration effects.

For the case of constant water depth, the term involving ¢ in (15)
is usually handled by substituting the expression for the constant
depth solution. For the case of a slowly varying depth, we proceed
by taking variations of L; with respect to #, which leads to the Euler-
Lagrange equation
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(17)
This is basically a kinematic constraint on the fluid column. In the
presence of ice and current, it is likely that the simplest approach is
to treat (15) and (17) as a set of coupled equations. In the absence
of a current, the total derivative appearing in (15) and (17) reduces
to a partial derivative with respect to time, and the two equations
can be collapsed more simply. The simplest general system results
from eliminating ¢ between (15) and (17), giving

nee + {Fa — Va- (R V401 lgn+ Tdm,wh( Vin) + V2 (pv 2] = 0

(18)
No simple generalization to a single-variable equation has been found
for the case where currents are retained.

2.2 Plane wave solutions

The plane wave solutions for the system described here are well
known from previous studies; they are described here in order to
establish notation for subsequent sections and to check the validity
of the equations. For the case of a domain with constant parameters,
we introduce the expressions
n = ae'V; ¢ = —ide'” (19)
where a and A are constant real amplitudes and ¢ is a phase function.
We further introduce
k = Vi



as definitions for the wavenumber vector and wave frequency. Using
(19) in (15) and (17) and neglecting ice acceleration effects leads to
the expressions
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A= (21)
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and
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with
0% = gk tanhkh (23)

In the absence of an ice layer, (22) and (23) reduce to (13), the
dispersion relation for wave-current interaction with a free surface.

An expression for the group velocity vector may be obtained ac-
cording to

Ow dok
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o
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as the scalar group velocity relative to the moving domain, and obtain
the expression
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Finally, an expression for the local average energy density is given
by

Cgr = (26)
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Note that the expression for ¢? in (22) may become negative if
the in-plane compression force acting on the ice becomes sufficiently
large. Under this condition, the ice layer becomes unstable, and it is
usually assumed that a local fracture of the ice would result. We note
here that the effect can be related to the fact that the Hamiltonian
density is not positive definite, with the instability occurring when
the energy density takes on values which are negative relative to an
undisturbed surface. The effect of in-plane compression on the wave
dispersion relation was described by Kheisin (1967), and has been
more thoroughly investigated more recently by a number of authors
starting with Kerr (1983). Schulkes et al (1987) suggest that values
of T occurring in the field would not be expected to lead either to
the instability of the ice layer, or to a negative or zero value of Cqr
in (26). However, Liu and Mollo-Christensen (1988) have suggested
that compression effects are prominant in the field, and provided
an analysis that suggests that the local reduction in group velocity
can lead to large wave events observed in the Weddell Sea. The
effect of in-plane stress may thus significantly modify values of the
parameters in the dispersion relation under normal conditions, and
should be carefully considered.

2.3 Equation for long waves

For waves which are long relative to the depth of water, kk takes on
small values and the coefficients in (11)-(12) approach the limits
Fl bd h;

In this limit, water depth can become comparable to (or less than) ice
thickness, and it is usually appropriate to retain the ice acceleration
effects in short wind waves are being considered. In this limit, and
neglecting current effects, the equations may be combined to give
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For the case D = 0 and all other coefficients constant, the resulting
model is equivalent to the model described in Keller and Goldstein
(1953). Here, the variable coeflicient extension for the shallow water
model appears as the appropriate limit of the more general mild-slope
model obtained above.

3 The refraction approximation

We now consider the equations governing the variation of a wave train
in a slowly modulated domain. We will first obtain a coupled eikonal
- transport model which retains diffraction effects. We will then drop
the diffraction terms to arrive at a geometric optics approximation,
as in Keller (1958) and Bretherton and Garrett (1963). Results for
Snell’s law shoaling on a plane beach are then presented.

3.1 Eikonal - transport equations

We start from the pair of equations (18) and (20) with the ice accel-
eration term dropped. Since the equations may not be combined in
a straightforward manner, we adopt the expressions:

n = ae'?, é = —ide™ (30)
where now a and A are real amplitudes which vary slowly in space
and time, and % is a real phase function. We also take

K = V¥, w =~ (31)
The first expression guarantees that
VixK=0 (32)

which can be used to obtain K when used together with an eikonal
equation. The leading order solution for A may be written as
go°
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Using (30)-(33) in (15) and (17) leads to a complicated expression
containing a real and imaginary part. Since the amplitudes and
phase functions are assumed to be real quantities, we separate the
parts and obtain
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(34) and (35) are the action transport equation and the eikonal equa-
tion, respectively. These equations may be used as the basis for a
combined refraction-diffraction calculation by solving (35) for the
scalar |K|, (32) for the direction of K, and (34) for the action E/o.



3.2 The geometric optics limit

The geometric optics approximation may be obtained by neglecting
diffraction effects in the eikonal-transport model (34)-(35). In this
limit, all starred quantities in the previous sections reduce to their
plane wave approximations, given in section 2.2. We are left with
(32) together with

IKIZ = k2; o = 0(2)(1 - M+ )\2), (37)
which completely determines the wavenumber and wave direction.
The transport equation reduces to

(£) + v (Ecg) =o. (39)
o/ o

where the group velocity vector is described in (24). This result is
completely analogous to the action conservation principle developed
by Bretherton and Garrett (1969). Any available refraction scheme
used to study the wave-current-variable depth case may be simply ex-
tended to include the effects described here by a suitable redefinition
of the group velocity and dispersion relation.

3.3 Refraction and shoaling over a plane slope

For the case of waves approaching shore over a one-dimensional to-
pography A(r). the results above can be greatly simplified. Denoting
8 as the angle between the local direction of propagation and the z
axis and imposing conservation of wave crests in the y direction, we
obtain the relation

ksinf = kgsinfg

(39)

or Suell’s law. Subscripts 0 denote deepwater conditions. For the
case where wave height does not vary in the longshore direction (and
in the absence of currents and time variations), (38) reduces to

1

—Cyr cos @ = constant
o

(40)

Using the expression (27) for the wave energy and rearranging, we
obtain

e K, K, (41)
ao
where K, is the shoaling coefficient given by
1/2 .
.= Cyro / (1—/\10+/\20>1/2 (42)
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and K, is the refraction coefficient given by
. cos g 1/2

K, = 43
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These results are identical to the usual forms for free surface waves
except for the function of A; and Az appearing in K; the ice effect
also enters through the definitions of & and Cy,.

Green (1978) presented results for normally incident waves shoal-
ing on a plane beach. His results are identical to those presented here.
A plot of shoaling coefficient K, (with K, = 1 for normally incident
waves) is given in Figure 1 for three different ice thicknesses along
with the ice-free result. The results here were computed both with
and without the ice acceleration effects in the wave dispersion rela-
tion. The results obtained for the two approximations were graphi-
cally indistinguishable, indicating the negligible effect of the ice mass
on the wave properties. Results for obliquely incident waves were also
obtained. The trend of results due to refraction at oblique incidence
is essentially similar to the results for the ice-free case, and no further
plots are included here.
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Figure 1: Shoaling coefficient K, for waves shoaling over a plane
beach (after Green, 1978).

4 A parabolic approximation

We now consider the development of a parabolic approximation for
nearly unidirectional propagation under ice, following the work of
Radder (1979) and others for surface water waves. The usual ap-
proach to this problem would be either to split the elliptic wave
equation into forward and backward-propagating portions, as in Rad-
der (1979), or to employ a WKB - type of expansion with spatial
derivatives of coefficients and amplitudes handled in a multiple scale
format. Since the wave-current model developed here is not con-
veniently written as a single governing equation, we take the some-
what unusual step of expanding the action and eikonal equations and
then recombining them to obtain the parabolic approximation. (It is
noted that the same results can be obtained using a direct multiple
scale approach applied to the governing boundary value problem; see
Kirby and Dalrymple (1983) or Kirby (1986).)

As usual, the ordering of spatial derivatives is handled using a
multiple-scale approach. Taking ¢ to characterise a small angular
deviation between the direction of propagation and the z axis, we
rewrite the phase function ¥ defined in (30) as

W(x) = /kdzex +6(x) (44)
The parabolic approximation arises from the assumption that § varies
at a rate proportional to € in the y direction, but at a slower rate
proportional to €2 in the z direction. At leading order, we then have

K = (k + €°0x,)ex + ¢y, ey (45)

|K|? = K + €(2k0x, + (6y,)?) + O(*) (46)

T= M+ 8%(2};0,(2 +(8y,)) + O(eY) (47)

X5 = Ao+ 2673 (2K0x, + (6,)%) + O(c") (18)

0" =w—kU — &(0x,U +6y,V) =01 — o,y (49)

where it is assumed that the ambient current vector U = (U.V)hasa
y direction component of O(e) relative to the z direction component.
In order to maintain correspondence with the usual splitting matrix
results, we take the variations of the ice layer and fluid doamin to be



at most of O(€?) in the z direction, but up to O(e) in the y direction.
Using these approximations, we obtain the forms

2 o1a? 0 o, a?
(&)@ [5) ], - e ()], -
£ X2 g Y, 0 Y

(50)
for the transport equation, and

2
a1 Ay Zlx T
fgeer] meflnes 2l (2)]

0
Y1 )
"

2/\2 - /\1
+ <—k2 a
for the eikonal equation. Here, subscripts X, and Y; represent slow
spatial derivatives at the indicated order in powers of e. We introduce
a complex amplitude « given by
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where k is some lateraly averaged wavenumber which varies only in
the z direction. After considerable algebra, the expressions (50) and

(51) may be combined to give the parabolic approximation
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This equation may be compared to the form given by Kirby (1986)
for the case of wave-current interaction without ice (equation (55)
there), and it is again apparent that a strong correspondence exists
between the two models, aside from a single coefficient appearing in
the diffraction term.

0(53)

Two example calculations are presented here to illustrate several
effects of ice on the wave propagation problem.

4.1 Wave diffraction by a circular ice lens

As a first example, we consider the effect of a finite region of relatively
thick ice on waves propagating under an otherwise uniform ice sheet
in water of constant depth. The lens has radius R and is centered
at (zrg,yo). Outside the lens, the ice thickness is given by d;. Inside
the lens, the thickness varies according to

2
d(z,y)=d1+dz(1—(1%> yi =l —a0) +(y— o) (54)

Results for one example are shown in Figure 2. For this case, we
take the depth h = 10m and the uniform ice thickness d; = 0.5m.
The ice lens has a radius R = 100m and an additional thickness
dy = Im. The wave period is 5 seconds. The figure shows contours
of ice thickness as dashed lines, and contours of instantaneous surface
elevation in increments of 0.25 times the incident wave height as solid
lines. As waves propagating from left to right, they encounter the ice
lens and experience a marked increase in phase speed. This causes
wave crests to bend away from the lens region, directing the wave
energy to the regions to either side of the lens. The local effect of
the ice also causes a marked decrease in surface displacement ampli-
tude, as in the shoaling examples in the previous section. Downwave
of the ice lens, there is some recovery of the surface displacement
amplitude as the ice thickness returns to its initial value, but the
shadow zone created by the ice lens is dramatic and persists many
wavelengths downwave of the localized disturbance. These results
indicate that a localized region of ice with increased thickness or
stiffness could provide a sheltering effect on structures or stretches
of shoreline downwave of the obstacle.

(51)
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Figure 2: Diffraction of waves by a thick ice lens imbedded in a
uniform ice sheet.

4.2 Effect of ice on wave diffraction by a shoal

As a second example, we study teh effect of a uniform ice cover on a
focussing and diffraction pattern caused by a local variation in water
depth. The geometry studied is that of Berkhoff et al (1982); the
experimental data from that study has been widely used as a veri-
fication test for combined refraction-diffraction computations. The
details of the geometry are omitted for brevity.

Depth contours in increments of 5 cm are shown as dashed lines
in Figures 3-4, with the elliptical feature representing a shoal which
decreases the local depth. Figure 3 shows contours of an instan-
taneous surface, with contour increments of 0.5 times the incident
wave amplitude. A focus and the development of a fringe pattern
is apparent in the region downwave of the shoal, to the right in the
picture. Also apparent is an area of increased wave height at the
lower right corner of the domain. This effect is due to the presence
of a reflecting lateral wall, which causes an area of increased wave
height as waves are turned towards the wall by refraction.

In figure 4, surface contours are shown for the case where a uni-
form ice layer with a thickness of 1 cm (giving a A, value of 1.361 in
decpwater for the 1 second wave considered here) covers the entire
domain. The longer apparent wavelength reflects an increase in the
wave phase speed resulting from bending effects in the ice. A focal
region with relatively higher wave height is still apparent directly
downwave of the shoal. However, the strength of the focus is quite
weak relative to the ice free case. In addition, it is apparent that the
wave height is initially decreased rather than increased as the waves
begin to focus over the top of the shoal. This result is consistent with
the general trend towards reduced wave heights during the shoaling
process, as indicated in Figure 1.

5 Conclusions

The present paper has established a comprehensive framework for
studying the propagation of waves under continuous sea ice in the
finite-depth nearshore environment. In the linearized approximation,
we have obtained the governing equations for waves in a domain in
which depth, ambient current under the ice, and ice thickness, modu-
lus and in-plane compressive stress are allowed to vary slowly relative
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Figure 3: Surface contours, ice-free case. Geometry of Berkhoff et al
(1982).
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Figure 4: Surface contours, 1 ¢cm uniform ice cover. Geometry of
Berkhoff et al (1982).

to the wavelength. The wave action conservation law has been de-
duced for slowly-varying wave trains and has been shown to be iden-
tical to the result of Bretherton and Garrett (1969). The parabolic
approximation has also been deduced and is found to be essentially
the same as the wave-current model given by Kirby (1986), after some
redefinition of the model coefficients. Examples have been provided
which illustrate the effect of localized variations in ice thickness on
the propagation of a plane wave, as well as the effect of an ice cover
on processes controlled by localized variations in depth. The case of
wave refraction under ice sheets with either isotropic compression or
a general state of in-plane stress is likely to lead to results of interest
and should be studied further.

In order to generalize the present model for detailed application
to coastal wave climates, it will be neccessary to obtain nonlinear
extensions to the model formulations. An extension to finite depth
of the results of Liu and Mollo-Christensen (1988) for narrow-banded
Stokes waves would lead to evolution equations of cubic Schrodinger
type in the parabolic approximation, as in Kirby and Dalrymple
(1983) for surface waves alone. However, as pointed out by Green
(1984), the ice-water system provides for the occurence of resonant
three-wave interactions, and so the nonlinear evolution of waves in
the nearshore system may well be dominated by second-order interac-
tions leading to significant modal energy exchanges, as in capillary-
gravity wave systems. These effects remain to be investigated in
detail.
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