Turbulent bubbly flow under breaking water waves

Jim Kirby and Morteza Derakhti

CACR, Dept. of Civil and Environmental Engineering, University of Delaware

USNCCM13, San Diego, July 27, 2015

Motivation

- Underwater optical and acoustical properties, atmosphere/ocean gas transfer
- Turbulence modulation by bubbles under breaking waves
- Link between dissipation and mixing processes

Why LES? Range of spatial scales

Sub-grid Scales (SGS)

Resolved scales

Turbulent multiphase flow

Table 1.1: Bubble Stokes number for different bubble diameters and turbulence dissipation rates.

Filtered poly-disperse two-fluid model

(Carrica et al. 1999, Ma et al. 2011, Lakehal et al. 2002,Derakhti\&Kirby 2014)

- Liquid phase

$$
\begin{aligned}
& \frac{\partial\left(\alpha^{l} \rho^{l}\right)}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\alpha^{l} \rho^{l} \tilde{u}_{j}^{l}\right)=0 \\
& \frac{\partial\left(\alpha^{l} \rho^{l} \tilde{u}_{i}^{l}\right)}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\alpha^{l} \rho^{l} \tilde{u}_{i}^{l} \tilde{u}_{j}^{l}\right)=-\frac{\partial}{\partial x_{j}}\left(\alpha^{l} \tilde{p}\right) \delta_{i j}+\alpha^{l} \rho^{l} g_{i}+\frac{\partial}{\partial x_{j}}\left[\alpha^{l}\left(\tilde{\sigma}_{i j}^{l}-\tau_{i j}^{l}\right)\right]+\mathbf{M}^{g^{l}}
\end{aligned}
$$

- Gas phase

$$
\begin{aligned}
& \frac{\partial N_{k}^{g}}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\tilde{u}_{k, j}^{g} N_{k}^{g}\right)=B_{k}^{g}+S_{k}^{g} \\
& 0=-\frac{\partial}{\partial x_{j}}\left(\alpha_{k}^{g} \tilde{p}\right) \delta_{i j}+\alpha_{k}^{g} \rho^{g} g_{i}+\mathbf{M}_{k}^{l g} \quad k=1, \cdots, N G
\end{aligned}
$$

Numerical implementation in TRUCHAS
(Rider and Kothe, 1998)

Closure models for poly-disperse LES

- Eddy viscosity approach:

$$
\begin{aligned}
& \tilde{\sigma}_{i j}^{l}-\tau_{i j}^{l, d}=2 \nu_{e f f}^{l} \tilde{\mathcal{S}}_{i j} \\
& \nu_{e f f}^{l}=\nu^{l}+\nu_{s g s}^{l}+\nu_{B I}^{l} \\
& \nu_{s g s}^{l}=\left(C_{s} \Delta\right)^{2}|\tilde{S}| \\
& \nu_{B I}^{l}=C_{B I T} \sum_{i=1}^{N G} \alpha_{k}^{g} d_{k}\left|\tilde{u}_{j}^{l}-\tilde{u}_{k, j}^{l}\right|
\end{aligned}
$$

Sato and Sekogushi

- Dynamic Smagorinsky model (DSM)
- $\mathrm{C}_{\mathrm{s}}{ }^{2}$ computed dynamically using the double filtered flow velocities proposed by Germano et al. (1991) and Lilly (1992)
- Converges to zero turbulent viscosity when flow is not turbulent
- The only input parameter is the filter width ratio
- Need averaging, here we follow the Zang et al (1993) and use the local averaging
- We used the box filter for the test filter

$$
\begin{aligned}
& \left(C_{s}\right)^{2}=-\frac{L_{i j} M_{i j}}{2 \hat{2}^{2} M_{i j} M_{i j}}
\end{aligned}
$$

- represent the test scale filter
with $\widehat{\Delta}$ width greater than the $\tilde{\Delta}$ and $\alpha=\widehat{\Delta} / \tilde{\Delta}>1$.

Closure models for poly-disperse LES

$$
\begin{gathered}
\mathbf{M}_{k}^{l g}=\tilde{\mathbf{f}}_{k}^{V M}+\tilde{\mathbf{f}}_{k}^{L}+\tilde{\mathbf{f}}_{k}^{D} \\
\tilde{\mathbf{f}}_{k}^{V M} \approx \alpha_{k}^{b} \rho^{l} C_{V M}\left(\frac{D \tilde{\mathbf{u}}^{l}}{D t}-\frac{D \tilde{\mathbf{u}}_{k}^{b}}{D t}\right) \\
\tilde{\mathbf{f}}_{k}^{L} \approx \alpha_{k}^{b} \rho^{l} C_{L}\left(\tilde{\mathbf{u}}^{l}-\tilde{\mathbf{u}}_{k}^{b}\right) \times\left(\nabla \times \tilde{\mathbf{u}}^{l}\right) \\
\tilde{\mathbf{f}}_{k}^{D} \approx \alpha_{k}^{b} \rho^{l} \frac{3}{4} \frac{C_{D}}{d_{k}^{b}}\left(\tilde{\mathbf{u}}^{l}-\tilde{\mathbf{u}}_{k}^{b}\right)\left|\tilde{\mathbf{u}}^{l}-\tilde{\mathbf{u}}_{k}^{b}\right|,
\end{gathered}
$$

- We connect the volume of the entrained bubbles to the local liquid turbulence near the free surface:

$$
\begin{aligned}
& B_{k}^{g}=\frac{c_{b}}{4 \pi}\left(\frac{\sigma}{\rho^{l}}\right)^{-1} \alpha^{l} \frac{f\left(a_{k}\right) \Delta a_{k}}{\sum_{k=1}^{N G} a_{k}^{2} f\left(a_{k}\right) \Delta a_{k}} \mathcal{P}_{s g s}^{l} \\
& \mathcal{P}_{s g s}^{l}=2 \nu_{s g s}^{l} \tilde{\mathcal{S}}_{i j} \tilde{\mathcal{S}}_{i j}=\nu_{s g s}^{l}|\tilde{\mathcal{S}}|^{2}
\end{aligned}
$$

- Initial size distribution (Deane\&Stokes):

$$
\begin{aligned}
& f(a) \propto a^{-10 / 3} \quad \text { if } \quad a \geq 1.0 \mathrm{~mm} \\
& f(a) \propto a^{-3 / 2} \quad \text { if } \quad a \leq 1.0 \mathrm{~mm}
\end{aligned}
$$

Model validation

- Extensive model validation has been done for steepness-limited breaking waves generated by dispersive focusing (Derakhti \& Kirby, JFM 2014):
- Short waves, followed by faster long waves, focus at a predefined location
- Snapshots of free surface evolution
- Evolution of bubble void fraction comparing to the photographs taken by Rapp and Melville (1990)
- Evolution of bubble void fraction comparing to the measurements by Lamarre and Melville (1991): Large plunging breaker

Total dissipation per unit length of breaking crest

- Bubble-induced dissipation accounts for more than 50% of the total dissipation, which is compatible with the measurements of potential energy of the bubble plume by Lamarre and Melville (1991).
- Although the total dissipation differs between different breaker types, the ratio of bubble- and shearinduced dissipation is invariant with respect to breaking type and intensity.
- The corresponding simulations without the inclusion of dispersed bubbles underpredict the total dissipation by about 35\%.

Case no. $\mathbf{L M}(J / m)$	$\hat{\epsilon}_{\text {total }}(J / m)$	$\hat{\epsilon}_{\text {total }}^{n b} / \hat{\epsilon}_{\text {total }}(\%)$	$\hat{\epsilon}_{\text {sgs }}^{S I} / \hat{\epsilon}_{\text {total }}(\%)$	$\hat{\epsilon}_{\text {sgs }}^{B I} / \hat{\epsilon}_{\text {total }}(\%)$	
Large plunging	17.8	14.7	63.7	45.9	52.9
Plunging	8.6	7.7	64.8	45.4	53.0
Weakly plunging/spilling	4.3	2.6	65.9	43.2	53.7
Spilling		1.4	64.5	42.3	51.6

Integrated TKE

Figure 28. Normalized total resolved TKE, \check{k}, in the breaking region, -_simulation with dispersed bubbles and -- simulation without inclusion of the dispersed bubbles for (a) P1; (b) SP1 and (c) S1. The reference value is $L_{c}^{2} C_{c}^{2}(S-S 0) S_{0}^{4}$. The results have been smoothed using two adjacent points.

- integrated TKE in the breaking region is damped by the dispersed bubbles about 20% for the large plunging breaker to 50% for the spilling breakers.
- In the plunging breakers, TKE is damped slightly or even enhanced during the initial stage of active breaking.

Moving to the surfzone

1) What are the physical characteristics of coherent structures (CS) generated by breaking waves in the surf zone?
2) What role do the CS play in determining the vertical distribution of air in the water column?

Periodic surf zone breaking waves

Ting \& Nelson (2011)
Ting et al (2013)

- Cnoidal waves with $\mathrm{H}=\mathbf{0 . 1 2 2} \mathrm{m}$ and $\mathrm{T}=2 \mathrm{~s}$
- Weakly plunging/spilling breaker
- $\Delta x=25 \mathrm{~mm}, \Delta y=\Delta z=7$ mm

Periodic spilling breakers: wave profiles and wave height

Wave profiles in surfzone

Wave height across surfzone.
Data: Ting and Nelson (2011) o Ting and Kirby (1996) +

Periodic spilling breakers: profiles of mean $\boldsymbol{u}, \boldsymbol{k}$

undertow

TKE

Phase - and spanwise-averaged velocities.
Color scale is for u^{\prime} rms.
Top: velocities in stationary coordinates
Bottom: velocities in wave-following frame (u-(gh) $)^{1 / 2}$)

Vortex structures (VS) identified by \boldsymbol{Q} criterion

CS in lab: PIV measurements

 (15 frames $=1$).

Ting and Nelson (2011)

Figure 11: (Left) Iso-surfaces of $\lambda_{2}=-60$ (dark blue color) and $k=250 \mathrm{~cm}^{2} / \mathrm{s}^{2}$ (orange color). (Right) Turbulent kinetic energy in $X-Y$ plane at $Z=-676 \mathrm{~mm}$; the contour variable is $k=\left(U^{2}+V^{2}+W^{2}\right) / 2 \mathrm{in} \mathrm{cm}^{2} / \mathrm{s}^{2}$. The bottom of the flume is located at $Z=-611 \mathrm{~mm}$.

Classification of coherent structures

- Vortex structures (VS): Q > 30
- "Downbursts" (DBS): $w^{\prime}<0$, Reynolds stress $>2 \mathrm{u}^{\prime}{ }_{\mathrm{rms}} \mathrm{w}^{\prime}{ }_{\mathrm{rms}}$
- "Upbursts" (UBS): w'>0, Reynolds stress >2 u'rms $^{\prime}{ }^{\prime}{ }^{\prime}{ }_{\text {rms }}$ (both "burst" cases require $Q<30$)

Adrian, 2007

Modeled horseshoe and downburst

Volumes occupied by CS's, and \boldsymbol{k} in each volume

What role do CS play in determining the vertical distribution of air in the water column?

3D void fraction distribution

The lower panels are the cross-sections (a-d)

$$
y=0.0805
$$

(a)

(c)

(b)

Contours are $\mathbf{Q}=30$
Colors show bubble void fraction in log scale

3D void fraction distribution

Time- and spanwise-averaged TKE and bubble void fraction inside and outside of CS

What role do the CS play in determining the vertical distribution of air in the water column?

- Bubbles may be preferentially accumulated in vortex structures (VS), and subsequently transported vertically inside the VS

Vortex in continuous phase $\varrho_{\text {c }}$

- Bubbles may also be transported by burst-like structures in a fashion similar to transport of turbulent fluctuations
- Time-averaged bubble void fractions and vertical flux rates below wave trough level inside the CS are an order of magnitude greater than outside the CS.

Vertical fluxes of turbulence and air

Vertical flux of k

Vertical flux of α_{b}

Are bubbles affecting the kinematics, dynamics?

Vertical velocity fluctuations: bubbles (left), no bubbles (right)

