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EFFECTS OF MODE TRUNCATION AND DISSIPATION ON
PREDICTIONS OF HIGHER ORDER STATISTICS

James M. Kaihatu1 and James T. Kirby, Member, ASCE2

Abstract

     We investigate the effects mode truncation and dissipation characteristics have on predictions
of wave shape statistics such as skewness and asymmetry. We demonstrate the effect of mode
truncation by calculating wave shape statistics for data from a laboratory experiment using an
increasing number of frequency components each calculation. We find that the values of skewness
and asymmetry converge to a maximum as more components are retained, with the maximum
values attained when components out to the Nyquist frequency are kept. We run a lowest order
Boussinesq shoaling model and a nonlinear dispersive shoaling model with the data, retaining
more components with each simulation. Both models show the same convergence characteristics as
the data as the number of retained frequency components increases. The lowest order Boussinesq
model, despite its shallow water formalism, yields skewness and asymmetry values closer to those
of the data than those of the dispersive model. This is likely due to the phase mismatches in the
dispersive model, which become large in deep water and thus violate the slowly-varying amplitude
assumption. We also investigate the effect of spectral dissipation on these predictions. We run the
lowest order Boussinesq shoaling model with different proportions of frequency-dependent
dissipation and calculate wave shape statistics. We find that the distribution must take into account
some aspect of (f)2 variation in the dissipation for reliable wave shape statistics.

Introduction

     The Boussinesq equations (Peregrine 1967) are robust predictors of  weakly
nonlinear wave propagation in shallow water. The “consistent” frequency domain
Boussinesq model of Freilich and Guza (1984) has been used in a number of
studies (e.g., Elgar and Guza 1985; Elgar et al. 1990) concerning nearshore wave
propagation; they have shown that this model does predict shallow water wave
spectra reliably provided that kh<<O(1), where k is the wave number and h the
water depth.
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     In recent years, however, frequency domain models with fewer restrictions on
the value of kh have been developed (e.g., Madsen and Sorensen 1993; Agnon et
al. 1993; Kaihatu and Kirby 1995). These models, because of their dispersive
nature, can be applied in greater water depths (and take into account a greater
frequency range) than the lower-order Boussinesq-type models. Application of
these models to laboratory data have shown their utility.
     A different test of these frequency domain models  would be to evaluate their
ability to replicate surface shape characteristics. This involves evaluating
quantities such as skewness and asymmetry. These higher order statistical
quantities track the free surface characteristics of waves, and thus lend insight
into the effect nonlinear energy exchange has on the evolution of the wave shape.
     Elgar et al. (1990) have investigated skewness and asymmetry predictions
from the consistent model of Freilich and Guza (1984) and compared these
quantities to field data taken at both Torrey Pines, CA and Santa Barbara, CA in
1980.  Because of the lowest order dispersion characteristics of the model, the
simulations required an upper frequency cutoff that was based on the relative
magnitude of the dispersion parameter kh. This upper frequency was established
prior to simulation and analysis so that no nonlinear interaction with frequencies
beyond the cutoff could occur. They found good data-model agreement for
relatively narrow banded spectra, but somewhat poorer agreement for broad
banded spectra. This is primarily due to the spectral energy content beyond the
cutoff frequency for the broad spectra data.
     No corresponding studies have been undertaken for the more dispersive
frequency domain models, particularly as applied to field measurements. The
ability of these models to simulate processes at frequencies beyond the small kh
limit is particularly germane to this problem. Bowen (1994) showed that the
calculation of skewness and asymmetry varied significantly with the number of
harmonics of the spectral peak retained. He used his laboratory data of shoaling
irregular waves on a slope to calculate these quantities with varying numbers of
harmonics of the spectral peak, and found that the values of skewness and
asymmetry converged to a maximum as the number of components retained
increased. The maximum values of skewness and asymmetry were reached when
the upper limit cutoff frequency reached the Nyquist limit. Bowen (1994) also
noted that the differences between the values of skewness and asymmetry as the
number of components increased were most marked in the breaking zone. This
would likely be due to the increased nonlinear shifting of energy to the higher
frequency components. The dependence of skewness and asymmetry on the
number of retained components was not evident in the work of Elgar et al. (1990)
due to the dispersion-based upper frequency cutoff for both model and data. This
upper frequency cutoff is not a function of kh  in the more dispersive frequency
domain models, so a different criteria needs to be applied to determine this cutoff.
Kaihatu and Kirby (1995), for example, use percentage of total variance. Other
concerns, such as upper frequency limitations on pressure to surface conversions



                                                                                                 Kaihatu and Kirby

3

(required when deducing free surface fluctuations from pressure records), can also
affect the choice of cutoff frequency.
     In this study we wish to investigate the effect the upper frequency cutoff has on
simulating these higher order statistics. We will first investigate skewness and
asymmetry values gleaned from experimental data. This will also lend insight into
the sensitivity of these statistics to cutoff frequency. We will then run two
shoaling models and determine the effect that retaining various numbers of
components has on the reliability of predictions of skewness and asymmetry. We
will find that the nature of the model has a strong effect on the predictions.

Skewness and Asymmetry in the Wavefield

     As waves in the nearshore shoal, nonlinear effects become more important.
The wave crests become sharper and the crests flatter. This is represented as an
increase in skewness (asymmetry about a horizonal plane). As the waves begin to
approach breaking, the front face of the wave becomes steeper. This is quantified
as an increase in negative asymmetry (in this context, referring to asymmetry
about a vertical plane).
     Skewness is defined as:
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where the brackets denote a time average, d  is the free surface elevation and H is
the Hilbert transform.
     We will be working with the Case 2 data of Mase and Kirby (1992); full details
of the experimental setup can be found therein. The tank consisted of a constant
depth section (h=47cm) of 10m length, and a 1:20 slope. A Pierson-Moskowitz
spectrum was input at the wave paddle. For Case 2, the value of kh at the spectral
peak in the deep portion of the tank was 1.9, a severe test of the dispersive wave
models. In this experiment, the sampling rate 6t s= 0 05.  with the data divided
into seven realizations at 2048 points each. The Nyquist frequency was 10Hz. The
evolution characteristics of this data are shown in Figure 1. This figure shows the
spectra at several gages taken out to the Nyquist frequency. It is apparent that the
high frequency tail increases in energy, particularly in shallow water.
     We use (1) and (2) to calculate the higher order statistics from the data. For
each calculation we retain in turn 300, 500, 700, 900, and 1024 frequency
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components (1024 components takes the calculation to the Nyquist limit). Plots of
Hrms (root-mean-square wave height), skewness and asymmetry appear in Figure
2. There is not much difference between the measured Hrms values for different
numbers of retained components; this implies that N=300 retains a significant
percentage of the energy content in the spectrum. However, the skewness and
asymmetry values clearly indicate that the number of retained frequency
components has a profound effect on the calculation of high order statistics, with
an increase in the number of components evidencing a convergence to a
maximum value. The differences are most apparent in the nearshore, as
nonlinearity becomes more prevalent in the wavefield. Additionally, the skewness
measure for the N=300 case is clearly less than those for more retained
components even in the offshore area, an indication that this number of
components is insufficient to describe the evolution of the shape of the wavefield.
This is in spite of the fact that N=300 retains sufficient energy for Hrms
quantification.

Shoaling Models

Now that we have demonstrated the effect the number of retained components
has on the evaluation of skewness and asymmetry, we now wish to determine how
this affects our ability to accurately model these effects. This is more germane for
the dispersive models, since the linear characteristics of the higher frequencies
could be more accurately modeled
     The consistent model of Freilich and Guza (1984) is:
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where A is the complex amplitude, and N is the index of the highest frequency
component considered. The right hand side is  a dissipation term that removes
energy from the spectrum in accordance with the probabilistic dissipation
expression of Thornton and Guza (1983). The distribution of that dissipation over
the frequency range is discussed in a later section. The second term in (3) is the
Green’s Law shoaling term.
     The nonlinear finite-depth shoaling model of Kaihatu and Kirby is:
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where R and S are interaction coefficients, and:

                                  O = + <0 <k k k dxl n l n                                                     (5)
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are referred to as “phase mismatches” since they determine the relative amount of
detuning away from resonance in x. They have the capacity to become quite large
in deep water, thus causing the nonlinear term to oscillate. The expansion
technique used to derive (4) assumes that the amplitudes are slowly varying in
space, an assumption which may be violated in deep water.
      We use the shoaling models to determine the effect of the cutoff frequency on
the simulation of these higher order statistics. Both models utilized error-checked
variable stepsize ODE integration schemes; the consistent model used the
Bulirsch-Stoer method with Richardson  extrapolation, while the dispersive model
used a fourth order Runge-Kutta scheme. We note that the consistent model of
Freilich and Guza (1984) is formally invalid in this water depth. The lack of phase
mismatch in the model is due to the nondispersive nature of the

Figure 1. Evolution of spectra in experiment of Mase and Kirby (1992). Top
figure: h=47cm (solid), h=25cm (dashed), h=15cm (dotted), h=7.5cm (dash-dot),
h=2.5cm (dash-x)
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Figure 2. Statistics calculated from Case 2 data of Mase and Kirby (1992). In each
figure: N=300 (bottom solid), N=500 (dashed), N=700 (dotted), N=900 (dash-
dot), N= 1024 (top solid). Top figure: Hrms. Middle figure: skewness. Bottom
figure: - asymmetry.
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nonlinear terms; in shallow water kn =nk1, where k1 is the wavenumber associated
with the lowest frequency t 1 in the spectrum. This causes the phase mismatches
to become zero. The dispersive models, with the finite phase mismatches, have
linear characteristics that work well in deep water, but have nonlinear terms that
may oscillate fast enough in deep water to cause difficulty in replicating the wave
shape. The phase mismatches are a consequence of the somewhat misordered
derivation of the dispersive models.
      We ran the two models with increasing numbers of components (N=300, 500,
700, 900 and 1024) to simulate the experiment of Mase and Kirby (1992). Then
we filter the data similarly, and calculate Hrms and third moments. The
comparisons between the consistent model and the data are shown in Figure 3. We
were able to simulate the spectrum out to the Nyquist frequency with this model;
it is relatively expedient compared to the more computationally intensive
dispersive model (4). Even so, the consistent model with N=900 and N=1024
requires substantial computational resources. Most runs were performed on the
US Army Waterways Experiment Station Cray YM-P. The N=900 and N=1024
runs, however, required a Cray batch queue with a very low assigned priority; thus
these were done, one realization at a time, on a Silicon Graphics Indy.
      Figure 3 shows that the consistent model greatly overpredicts the Hrms values
of the data. This is not surprising, since the model is clearly outside its area of
validity; Green’s Law, the linear shoaling mechanism in the consistent model,
overpredicts the shallow water spectral amplitudes when initialized in deep water.
In addition, the model results for all simulations agree, which indicates that
N=300 is sufficient for describing the energy level in the spectrum. The skewness
and asymmetry values, on the other hand, agree reasonably well with the data.
This seems inconsistent with the fact that the consistent model is far outside its
range of validity. Additionally, the model results show the same tendency to
converge to a maximum value as N increases as shown by the data.
     The dispersive model (4) required significantly more computational resources
than the consistent model. This is primarily due to the phase mismatches of the
dispersive model; their size in deep water causes difficulty in solving the sets of
equations. Available computational resources only allowed the N=300 and N=500
cases to be run with this model.
     Figure 4 shows the comparisons between the statistics from the experiment of
Mase and Kirby (1992) and the dispersive model (4). The Hrms comparison is not
unexpected, since the dispersive model does have the ability to reliably model
spectral shoaling from deep to shallow water. The third moment comparisons,
however, look worse than those of the consistent model. This is somewhat
surprising, since the dispersive model has linear characteristics that can be applied
to deeper water. However, the likely cause of these deleterious comparisons are
the phase mismatches. We define a normalized phase mismatch:
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The magnitude of M when N=1024 is 25 in the deep portion of the tank. This
magnitude of mismatch can induce oscillations which have deleterious effects on
the replication of the free surface. Thus, these phase mismatches serve to keep the
wave from attaining a realistic form. This is not evident in spectra comparisons
shown in studies of dispersive frequency domain models (e.g., Agnon et al. 1993;
Kaihatu and Kirby 1995) since these effects are averaged.
     One feature that is apparent with both the consistent and dispersive model
simulations is that the model results underpredict the skewness and asymmetry
values seen in the data for each particular cutoff frequency; this is true even at the
Nyquist frequency. One reason for this underprediction for N<1024 is that all
frequencies of the data have undergone nonlinear energy exchange with all others,
while the model simulations are limited to those below the cutoff.

Effect of Dissipation Mechanism on Statistics

     Both models have a dissipation mechanism that removes energy in the
spectrum based on a probabilistic decay function developed by Thornton and
Guza (1983). This dissipation mechanism is:
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where fpeak is the peak frequency of the spectrum, fn is the nth frequency, F is a
weighting factor, and ( )` x  is the simple dissipation model of Thornton and Guza:
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Figure 3. Comparison of modeled statistics to data of Mase and Kirby (1992)
using the consistent model of Freilich and Guza (1984). In each figure: N=300
(bottom solid line is data, bottom “x” is model), N=500 (dashed line is data, “o” is
model), N=700 (dotted line is data, “*” is model), N=900 (dash-dot line is data,
“+” is model), N=1024 (top solid line is data, top “x” is model). Top figure: Hrms.
Middle figure: skewness. Bottom figure: -asymmetry.
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Figure 4. Comparison of modeled statistics to data of Mase and Kirby (1992)
using the dispersive model of Kaihatu and Kirby (1995). In each figure: N=300
(bottom solid line is data, bottom “x” is model), N=500 (dashed line is data, “o” is
model), N=700 (dotted line is data), N=900 (dash-dot line is data), N=1024 (top
solid line is data). Top figure: Hrms. Middle figure: skewness. Bottom figure: -
asymmetry.
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 where B and a  are free parameters set to 1.0 and 0.6, respectively. The mean
frequency f is taken to be the peak frequency. These values are close to those
found by Thornton and Guza (1983). The proper value of F is a matter of some
discussion; this weighing factor determines the dependence of the dissipation on
frequency. Setting F=1.0 causes the dissipation to be equal across all frequencies,
while setting F=0 weights the dissipation proportionally to (f)2. Physical
arguments for the proper value of F are presented elsewhere (Eldeberky and
Battjes 1996; Kirby and Kaihatu 1996)  and thus will not be presented here. The
primary intent in this section is to discern the effect the particular value of F has
on higher order statistics.
     Realizing that we will not obtain accurate predictions of these quantities (for
the reasons described earlier), we instead look for the effect various values of F
have on the trends of the skewness and asymmetry values as waves propagate into
shallow water. We ran both the consistent model of Freilich and Guza (1984) for
various values of F, using N=300. Figure 5 shows skewness and asymmetry
results for the consistent model with F=0., 0.25, 0.5, 0.75, and 1.0. The skewness
results indicate that F=0.75 follows the trend of the data best, while the
asymmetry results show that F=0.5 is most representative. However, what is more
instructive are the comparisons between the simulations. The skewness values for
F=0, F=0.25 and F=0.5 show a decrease at the last three gages. These values of F
weight the dissipation higher towards higher frequencies, thus suppressing the
nonlinear energy transfer to higher frequencies. The converse trend is evident in
the asymmetry predictions. The F=0 has the most negative asymmetry for water
depths up to 7.5cm, at which point the negative asymmetry unexpectedly
decreases in the inner surfzone. The fact that the F=0 curve exhibits the most
negative asymmetry until its sudden downturn is indicative of the sawtooth shape
of the breaking waves, which are in line with an (f)2 distribution of dissipation.
Kirby and Kaihatu (1996) discuss the physical basis behind this supposition. As
mentioned before, the F=0.5 best matches the trend of the data for the entire range
of water depths. The fact that the F=1.0 curves are not the best representations of
the skewness and asymmetry trends indicates that some weighting of the
dissipation toward higher frequencies is required to simulate this reliably, contrary
to Eldeberky and Battjes (1996), who indicate that no such weighting need take
place. In fact, it may be that if all components of the spectrum out to the Nyquist
frequency were retained we can rely solely on the (f)2 representation of the
dissipation distribution, and that retention of _n0  in (8) is an artifact of the
truncation of the spectrum below the Nyquist frequency. Additionally, the sudden
downturn of both skewness and asymmetry from the model results in the inner
surf zone may also be an artifact of the mode truncation; Kirby and Kaihatu
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(1996) show a comparison of third moments between the Case 2 data of Mase and
Kirby (1992) and the time-domain extended Boussinesq code of Wei et al. (1995).
This comparison, which utilized the entire unfiltered data set in the model
simulation, showed that the time-domain model can reliably replicate third
moment statistics.

Conclusions

     We used the data of Mase and Kirby (1992) and two nonlinear shoaling models
to investigate the effect mode truncation and dissipation mechanisms have on the
prediction of third order statistics. We found that the number of components used
in the calculation has a strong effect on the skewness and asymmetry values; this
was true for both the data and the model simulations. The consistent model of
Freilich and Guza (1984), though formally invalid for the peak kh values of the
experiment, actually modeled the third order moments better than the dispersive
model of Kaihatu and Kirby (1995). This is due to the phase mismatches in the
dispersive model; their size in deep water causes the nonlinear term to oscillate
considerably, keeping the wave from attaining a realistic form. We also looked at
the effect different weightings of frequency dependent dissipation mechanisms
have on the predictions of these statistics, and found that these mechanisms must
contain some frequency dependence to model skewness and asymmetry
realistically. This is contrary to Eldeberky and Battjes (1996), who maintained that
a constant distribution of dissipation over frequency is optimum. Further work in
this area will focus on continued development of the dissipation models.
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Figure 5. Skewness and asymmetry comparisons between the consistent model of
Freilich and Guza (1984) and Case 2 data of Mase and Kirby (1992) for different
values of F. In each figure: data (*); F=0 (solid); F=0.25 (dashed); F=0.5
(dotted); F=0.75 (dash-dot), F=1.0 (dash-x). Top figure: skewness. Bottom figure:
- asymmetry.


